| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smuval | Structured version Visualization version GIF version | ||
| Description: Define the addition of two bit sequences, using df-had 1594 and df-cad 1607 bit operations. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| Ref | Expression |
|---|---|
| smuval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
| smuval.b | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
| smuval.p | ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
| smuval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| smuval | ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smuval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ0) | |
| 2 | smuval.b | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℕ0) | |
| 3 | smuval.p | . . . 4 ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
| 4 | 1, 2, 3 | smufval 16406 | . . 3 ⊢ (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) |
| 5 | 4 | eleq2d 2814 | . 2 ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))})) |
| 6 | smuval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 7 | id 22 | . . . . 5 ⊢ (𝑘 = 𝑁 → 𝑘 = 𝑁) | |
| 8 | fvoveq1 7376 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1))) | |
| 9 | 7, 8 | eleq12d 2822 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
| 10 | 9 | elrab3 3651 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))} ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
| 11 | 6, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))} ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
| 12 | 5, 11 | bitrd 279 | 1 ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 ∅c0 4286 ifcif 4478 𝒫 cpw 4553 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 0cc0 11028 1c1 11029 + caddc 11031 − cmin 11365 ℕ0cn0 12402 seqcseq 13926 sadd csad 16349 smul csmu 16350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-n0 12403 df-seq 13927 df-smu 16405 |
| This theorem is referenced by: smuval2 16411 smupvallem 16412 smu01lem 16414 |
| Copyright terms: Public domain | W3C validator |