![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smuval | Structured version Visualization version GIF version |
Description: Define the addition of two bit sequences, using df-had 1707 and df-cad 1720 bit operations. (Contributed by Mario Carneiro, 9-Sep-2016.) |
Ref | Expression |
---|---|
smuval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
smuval.b | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
smuval.p | ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
smuval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
smuval | ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smuval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ0) | |
2 | smuval.b | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℕ0) | |
3 | smuval.p | . . . 4 ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
4 | 1, 2, 3 | smufval 15579 | . . 3 ⊢ (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) |
5 | 4 | eleq2d 2892 | . 2 ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))})) |
6 | smuval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
7 | id 22 | . . . . 5 ⊢ (𝑘 = 𝑁 → 𝑘 = 𝑁) | |
8 | fvoveq1 6933 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1))) | |
9 | 7, 8 | eleq12d 2900 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
10 | 9 | elrab3 3587 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))} ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
11 | 6, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))} ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
12 | 5, 11 | bitrd 271 | 1 ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 {crab 3121 ⊆ wss 3798 ∅c0 4146 ifcif 4308 𝒫 cpw 4380 ↦ cmpt 4954 ‘cfv 6127 (class class class)co 6910 ↦ cmpt2 6912 0cc0 10259 1c1 10260 + caddc 10262 − cmin 10592 ℕ0cn0 11625 seqcseq 13102 sadd csad 15522 smul csmu 15523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-1cn 10317 ax-addcl 10319 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-nn 11358 df-n0 11626 df-seq 13103 df-smu 15578 |
This theorem is referenced by: smuval2 15584 smupvallem 15585 smu01lem 15587 |
Copyright terms: Public domain | W3C validator |