Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smuval | Structured version Visualization version GIF version |
Description: Define the addition of two bit sequences, using df-had 1595 and df-cad 1609 bit operations. (Contributed by Mario Carneiro, 9-Sep-2016.) |
Ref | Expression |
---|---|
smuval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
smuval.b | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
smuval.p | ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
smuval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
smuval | ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smuval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ0) | |
2 | smuval.b | . . . 4 ⊢ (𝜑 → 𝐵 ⊆ ℕ0) | |
3 | smuval.p | . . . 4 ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
4 | 1, 2, 3 | smufval 15881 | . . 3 ⊢ (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) |
5 | 4 | eleq2d 2837 | . 2 ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))})) |
6 | smuval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
7 | id 22 | . . . . 5 ⊢ (𝑘 = 𝑁 → 𝑘 = 𝑁) | |
8 | fvoveq1 7178 | . . . . 5 ⊢ (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1))) | |
9 | 7, 8 | eleq12d 2846 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝑘 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
10 | 9 | elrab3 3605 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))} ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
11 | 6, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝑁 ∈ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))} ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
12 | 5, 11 | bitrd 282 | 1 ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 ⊆ wss 3860 ∅c0 4227 ifcif 4423 𝒫 cpw 4497 ↦ cmpt 5115 ‘cfv 6339 (class class class)co 7155 ∈ cmpo 7157 0cc0 10580 1c1 10581 + caddc 10583 − cmin 10913 ℕ0cn0 11939 seqcseq 13423 sadd csad 15824 smul csmu 15825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-1cn 10638 ax-addcl 10640 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-nn 11680 df-n0 11940 df-seq 13424 df-smu 15880 |
This theorem is referenced by: smuval2 15886 smupvallem 15887 smu01lem 15889 |
Copyright terms: Public domain | W3C validator |