| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmade | Structured version Visualization version GIF version | ||
| Description: Membership in the made function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| elmade | ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madef 27821 | . . . . 5 ⊢ M :On⟶𝒫 No | |
| 2 | 1 | ffvelcdmi 7078 | . . . 4 ⊢ (𝐴 ∈ On → ( M ‘𝐴) ∈ 𝒫 No ) |
| 3 | 2 | elpwid 4589 | . . 3 ⊢ (𝐴 ∈ On → ( M ‘𝐴) ⊆ No ) |
| 4 | 3 | sseld 3962 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) → 𝑋 ∈ No )) |
| 5 | scutcl 27771 | . . . . . 6 ⊢ (𝑙 <<s 𝑟 → (𝑙 |s 𝑟) ∈ No ) | |
| 6 | eleq1 2823 | . . . . . . 7 ⊢ ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No ↔ 𝑋 ∈ No )) | |
| 7 | 6 | biimpd 229 | . . . . . 6 ⊢ ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No → 𝑋 ∈ No )) |
| 8 | 5, 7 | mpan9 506 | . . . . 5 ⊢ ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
| 9 | 8 | rexlimivw 3138 | . . . 4 ⊢ (∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
| 10 | 9 | rexlimivw 3138 | . . 3 ⊢ (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝐴 ∈ On → (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No )) |
| 12 | madeval2 27818 | . . . . 5 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)}) | |
| 13 | 12 | eleq2d 2821 | . . . 4 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ 𝑋 ∈ {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})) |
| 14 | eqeq2 2748 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑙 |s 𝑟) = 𝑥 ↔ (𝑙 |s 𝑟) = 𝑋)) | |
| 15 | 14 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 16 | 15 | 2rexbidv 3210 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 17 | 16 | elrab3 3677 | . . . 4 ⊢ (𝑋 ∈ No → (𝑋 ∈ {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 18 | 13, 17 | sylan9bb 509 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 19 | 18 | ex 412 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ No → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))) |
| 20 | 4, 11, 19 | pm5.21ndd 379 | 1 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 {crab 3420 𝒫 cpw 4580 ∪ cuni 4888 class class class wbr 5124 “ cima 5662 Oncon0 6357 ‘cfv 6536 (class class class)co 7410 No csur 27608 <<s csslt 27749 |s cscut 27751 M cmade 27807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-1o 8485 df-2o 8486 df-no 27611 df-slt 27612 df-bday 27613 df-sslt 27750 df-scut 27752 df-made 27812 |
| This theorem is referenced by: elmade2 27837 |
| Copyright terms: Public domain | W3C validator |