MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmade Structured version   Visualization version   GIF version

Theorem elmade 27906
Description: Membership in the made function. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
elmade (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
Distinct variable groups:   𝐴,𝑙,𝑟   𝑋,𝑙,𝑟

Proof of Theorem elmade
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 madef 27895 . . . . 5 M :On⟶𝒫 No
21ffvelcdmi 7103 . . . 4 (𝐴 ∈ On → ( M ‘𝐴) ∈ 𝒫 No )
32elpwid 4609 . . 3 (𝐴 ∈ On → ( M ‘𝐴) ⊆ No )
43sseld 3982 . 2 (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) → 𝑋 No ))
5 scutcl 27847 . . . . . 6 (𝑙 <<s 𝑟 → (𝑙 |s 𝑟) ∈ No )
6 eleq1 2829 . . . . . . 7 ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No 𝑋 No ))
76biimpd 229 . . . . . 6 ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No 𝑋 No ))
85, 7mpan9 506 . . . . 5 ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 No )
98rexlimivw 3151 . . . 4 (∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 No )
109rexlimivw 3151 . . 3 (∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 No )
1110a1i 11 . 2 (𝐴 ∈ On → (∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 No ))
12 madeval2 27892 . . . . 5 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})
1312eleq2d 2827 . . . 4 (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ 𝑋 ∈ {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)}))
14 eqeq2 2749 . . . . . . 7 (𝑥 = 𝑋 → ((𝑙 |s 𝑟) = 𝑥 ↔ (𝑙 |s 𝑟) = 𝑋))
1514anbi2d 630 . . . . . 6 (𝑥 = 𝑋 → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
16152rexbidv 3222 . . . . 5 (𝑥 = 𝑋 → (∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
1716elrab3 3693 . . . 4 (𝑋 No → (𝑋 ∈ {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
1813, 17sylan9bb 509 . . 3 ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
1918ex 412 . 2 (𝐴 ∈ On → (𝑋 No → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))))
204, 11, 19pm5.21ndd 379 1 (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  {crab 3436  𝒫 cpw 4600   cuni 4907   class class class wbr 5143  cima 5688  Oncon0 6384  cfv 6561  (class class class)co 7431   No csur 27684   <<s csslt 27825   |s cscut 27827   M cmade 27881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-2o 8507  df-no 27687  df-slt 27688  df-bday 27689  df-sslt 27826  df-scut 27828  df-made 27886
This theorem is referenced by:  elmade2  27907
  Copyright terms: Public domain W3C validator