| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmade | Structured version Visualization version GIF version | ||
| Description: Membership in the made function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| elmade | ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madef 27771 | . . . . 5 ⊢ M :On⟶𝒫 No | |
| 2 | 1 | ffvelcdmi 7058 | . . . 4 ⊢ (𝐴 ∈ On → ( M ‘𝐴) ∈ 𝒫 No ) |
| 3 | 2 | elpwid 4575 | . . 3 ⊢ (𝐴 ∈ On → ( M ‘𝐴) ⊆ No ) |
| 4 | 3 | sseld 3948 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) → 𝑋 ∈ No )) |
| 5 | scutcl 27721 | . . . . . 6 ⊢ (𝑙 <<s 𝑟 → (𝑙 |s 𝑟) ∈ No ) | |
| 6 | eleq1 2817 | . . . . . . 7 ⊢ ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No ↔ 𝑋 ∈ No )) | |
| 7 | 6 | biimpd 229 | . . . . . 6 ⊢ ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No → 𝑋 ∈ No )) |
| 8 | 5, 7 | mpan9 506 | . . . . 5 ⊢ ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
| 9 | 8 | rexlimivw 3131 | . . . 4 ⊢ (∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
| 10 | 9 | rexlimivw 3131 | . . 3 ⊢ (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝐴 ∈ On → (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No )) |
| 12 | madeval2 27768 | . . . . 5 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)}) | |
| 13 | 12 | eleq2d 2815 | . . . 4 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ 𝑋 ∈ {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})) |
| 14 | eqeq2 2742 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑙 |s 𝑟) = 𝑥 ↔ (𝑙 |s 𝑟) = 𝑋)) | |
| 15 | 14 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 16 | 15 | 2rexbidv 3203 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 17 | 16 | elrab3 3663 | . . . 4 ⊢ (𝑋 ∈ No → (𝑋 ∈ {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 18 | 13, 17 | sylan9bb 509 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 19 | 18 | ex 412 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ No → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))) |
| 20 | 4, 11, 19 | pm5.21ndd 379 | 1 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 𝒫 cpw 4566 ∪ cuni 4874 class class class wbr 5110 “ cima 5644 Oncon0 6335 ‘cfv 6514 (class class class)co 7390 No csur 27558 <<s csslt 27699 |s cscut 27701 M cmade 27757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-made 27762 |
| This theorem is referenced by: elmade2 27787 |
| Copyright terms: Public domain | W3C validator |