| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmade | Structured version Visualization version GIF version | ||
| Description: Membership in the made function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| elmade | ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madef 27798 | . . . . 5 ⊢ M :On⟶𝒫 No | |
| 2 | 1 | ffvelcdmi 7016 | . . . 4 ⊢ (𝐴 ∈ On → ( M ‘𝐴) ∈ 𝒫 No ) |
| 3 | 2 | elpwid 4559 | . . 3 ⊢ (𝐴 ∈ On → ( M ‘𝐴) ⊆ No ) |
| 4 | 3 | sseld 3933 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) → 𝑋 ∈ No )) |
| 5 | scutcl 27744 | . . . . . 6 ⊢ (𝑙 <<s 𝑟 → (𝑙 |s 𝑟) ∈ No ) | |
| 6 | eleq1 2819 | . . . . . . 7 ⊢ ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No ↔ 𝑋 ∈ No )) | |
| 7 | 6 | biimpd 229 | . . . . . 6 ⊢ ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No → 𝑋 ∈ No )) |
| 8 | 5, 7 | mpan9 506 | . . . . 5 ⊢ ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
| 9 | 8 | rexlimivw 3129 | . . . 4 ⊢ (∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
| 10 | 9 | rexlimivw 3129 | . . 3 ⊢ (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝐴 ∈ On → (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No )) |
| 12 | madeval2 27795 | . . . . 5 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)}) | |
| 13 | 12 | eleq2d 2817 | . . . 4 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ 𝑋 ∈ {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})) |
| 14 | eqeq2 2743 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑙 |s 𝑟) = 𝑥 ↔ (𝑙 |s 𝑟) = 𝑋)) | |
| 15 | 14 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 16 | 15 | 2rexbidv 3197 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 17 | 16 | elrab3 3648 | . . . 4 ⊢ (𝑋 ∈ No → (𝑋 ∈ {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 18 | 13, 17 | sylan9bb 509 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 19 | 18 | ex 412 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ No → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))) |
| 20 | 4, 11, 19 | pm5.21ndd 379 | 1 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 𝒫 cpw 4550 ∪ cuni 4859 class class class wbr 5091 “ cima 5619 Oncon0 6306 ‘cfv 6481 (class class class)co 7346 No csur 27579 <<s csslt 27721 |s cscut 27723 M cmade 27784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-no 27582 df-slt 27583 df-bday 27584 df-sslt 27722 df-scut 27724 df-made 27789 |
| This theorem is referenced by: elmade2 27814 |
| Copyright terms: Public domain | W3C validator |