MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmade Structured version   Visualization version   GIF version

Theorem elmade 27709
Description: Membership in the made function. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
elmade (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
Distinct variable groups:   𝐴,𝑙,𝑟   𝑋,𝑙,𝑟

Proof of Theorem elmade
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 madef 27698 . . . . 5 M :On⟶𝒫 No
21ffvelcdmi 7085 . . . 4 (𝐴 ∈ On → ( M ‘𝐴) ∈ 𝒫 No )
32elpwid 4611 . . 3 (𝐴 ∈ On → ( M ‘𝐴) ⊆ No )
43sseld 3981 . 2 (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) → 𝑋 No ))
5 scutcl 27650 . . . . . 6 (𝑙 <<s 𝑟 → (𝑙 |s 𝑟) ∈ No )
6 eleq1 2820 . . . . . . 7 ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No 𝑋 No ))
76biimpd 228 . . . . . 6 ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No 𝑋 No ))
85, 7mpan9 506 . . . . 5 ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 No )
98rexlimivw 3150 . . . 4 (∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 No )
109rexlimivw 3150 . . 3 (∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 No )
1110a1i 11 . 2 (𝐴 ∈ On → (∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 No ))
12 madeval2 27695 . . . . 5 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})
1312eleq2d 2818 . . . 4 (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ 𝑋 ∈ {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)}))
14 eqeq2 2743 . . . . . . 7 (𝑥 = 𝑋 → ((𝑙 |s 𝑟) = 𝑥 ↔ (𝑙 |s 𝑟) = 𝑋))
1514anbi2d 628 . . . . . 6 (𝑥 = 𝑋 → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
16152rexbidv 3218 . . . . 5 (𝑥 = 𝑋 → (∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
1716elrab3 3684 . . . 4 (𝑋 No → (𝑋 ∈ {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
1813, 17sylan9bb 509 . . 3 ((𝐴 ∈ On ∧ 𝑋 No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
1918ex 412 . 2 (𝐴 ∈ On → (𝑋 No → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))))
204, 11, 19pm5.21ndd 379 1 (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wrex 3069  {crab 3431  𝒫 cpw 4602   cuni 4908   class class class wbr 5148  cima 5679  Oncon0 6364  cfv 6543  (class class class)co 7412   No csur 27488   <<s csslt 27628   |s cscut 27630   M cmade 27684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-1o 8472  df-2o 8473  df-no 27491  df-slt 27492  df-bday 27493  df-sslt 27629  df-scut 27631  df-made 27689
This theorem is referenced by:  elmade2  27710
  Copyright terms: Public domain W3C validator