| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmade | Structured version Visualization version GIF version | ||
| Description: Membership in the made function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| elmade | ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madef 27812 | . . . . 5 ⊢ M :On⟶𝒫 No | |
| 2 | 1 | ffvelcdmi 7072 | . . . 4 ⊢ (𝐴 ∈ On → ( M ‘𝐴) ∈ 𝒫 No ) |
| 3 | 2 | elpwid 4584 | . . 3 ⊢ (𝐴 ∈ On → ( M ‘𝐴) ⊆ No ) |
| 4 | 3 | sseld 3957 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) → 𝑋 ∈ No )) |
| 5 | scutcl 27764 | . . . . . 6 ⊢ (𝑙 <<s 𝑟 → (𝑙 |s 𝑟) ∈ No ) | |
| 6 | eleq1 2822 | . . . . . . 7 ⊢ ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No ↔ 𝑋 ∈ No )) | |
| 7 | 6 | biimpd 229 | . . . . . 6 ⊢ ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No → 𝑋 ∈ No )) |
| 8 | 5, 7 | mpan9 506 | . . . . 5 ⊢ ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
| 9 | 8 | rexlimivw 3137 | . . . 4 ⊢ (∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
| 10 | 9 | rexlimivw 3137 | . . 3 ⊢ (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝐴 ∈ On → (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No )) |
| 12 | madeval2 27809 | . . . . 5 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)}) | |
| 13 | 12 | eleq2d 2820 | . . . 4 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ 𝑋 ∈ {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})) |
| 14 | eqeq2 2747 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑙 |s 𝑟) = 𝑥 ↔ (𝑙 |s 𝑟) = 𝑋)) | |
| 15 | 14 | anbi2d 630 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 16 | 15 | 2rexbidv 3206 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 17 | 16 | elrab3 3672 | . . . 4 ⊢ (𝑋 ∈ No → (𝑋 ∈ {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 18 | 13, 17 | sylan9bb 509 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| 19 | 18 | ex 412 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ No → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))) |
| 20 | 4, 11, 19 | pm5.21ndd 379 | 1 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 𝒫 cpw 4575 ∪ cuni 4883 class class class wbr 5119 “ cima 5657 Oncon0 6352 ‘cfv 6530 (class class class)co 7403 No csur 27601 <<s csslt 27742 |s cscut 27744 M cmade 27798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-1o 8478 df-2o 8479 df-no 27604 df-slt 27605 df-bday 27606 df-sslt 27743 df-scut 27745 df-made 27803 |
| This theorem is referenced by: elmade2 27824 |
| Copyright terms: Public domain | W3C validator |