Step | Hyp | Ref
| Expression |
1 | | madef 27351 |
. . . . 5
β’ M
:OnβΆπ« No |
2 | 1 | ffvelcdmi 7086 |
. . . 4
β’ (π΄ β On β ( M
βπ΄) β π«
No ) |
3 | 2 | elpwid 4612 |
. . 3
β’ (π΄ β On β ( M
βπ΄) β No ) |
4 | 3 | sseld 3982 |
. 2
β’ (π΄ β On β (π β ( M βπ΄) β π β No
)) |
5 | | scutcl 27303 |
. . . . . 6
β’ (π <<s π β (π |s π) β No
) |
6 | | eleq1 2822 |
. . . . . . 7
β’ ((π |s π) = π β ((π |s π) β No
β π β No )) |
7 | 6 | biimpd 228 |
. . . . . 6
β’ ((π |s π) = π β ((π |s π) β No
β π β No )) |
8 | 5, 7 | mpan9 508 |
. . . . 5
β’ ((π <<s π β§ (π |s π) = π) β π β No
) |
9 | 8 | rexlimivw 3152 |
. . . 4
β’
(βπ β
π« βͺ ( M β π΄)(π <<s π β§ (π |s π) = π) β π β No
) |
10 | 9 | rexlimivw 3152 |
. . 3
β’
(βπ β
π« βͺ ( M β π΄)βπ β π« βͺ ( M β π΄)(π <<s π β§ (π |s π) = π) β π β No
) |
11 | 10 | a1i 11 |
. 2
β’ (π΄ β On β (βπ β π« βͺ ( M β π΄)βπ β π« βͺ ( M β π΄)(π <<s π β§ (π |s π) = π) β π β No
)) |
12 | | madeval2 27348 |
. . . . 5
β’ (π΄ β On β ( M
βπ΄) = {π₯ β
No β£ βπ
β π« βͺ ( M β π΄)βπ β π« βͺ ( M β π΄)(π <<s π β§ (π |s π) = π₯)}) |
13 | 12 | eleq2d 2820 |
. . . 4
β’ (π΄ β On β (π β ( M βπ΄) β π β {π₯ β No
β£ βπ β
π« βͺ ( M β π΄)βπ β π« βͺ ( M β π΄)(π <<s π β§ (π |s π) = π₯)})) |
14 | | eqeq2 2745 |
. . . . . . 7
β’ (π₯ = π β ((π |s π) = π₯ β (π |s π) = π)) |
15 | 14 | anbi2d 630 |
. . . . . 6
β’ (π₯ = π β ((π <<s π β§ (π |s π) = π₯) β (π <<s π β§ (π |s π) = π))) |
16 | 15 | 2rexbidv 3220 |
. . . . 5
β’ (π₯ = π β (βπ β π« βͺ ( M β π΄)βπ β π« βͺ ( M β π΄)(π <<s π β§ (π |s π) = π₯) β βπ β π« βͺ ( M β π΄)βπ β π« βͺ ( M β π΄)(π <<s π β§ (π |s π) = π))) |
17 | 16 | elrab3 3685 |
. . . 4
β’ (π β
No β (π β
{π₯ β No β£ βπ β π« βͺ ( M β π΄)βπ β π« βͺ ( M β π΄)(π <<s π β§ (π |s π) = π₯)} β βπ β π« βͺ ( M β π΄)βπ β π« βͺ ( M β π΄)(π <<s π β§ (π |s π) = π))) |
18 | 13, 17 | sylan9bb 511 |
. . 3
β’ ((π΄ β On β§ π β
No ) β (π
β ( M βπ΄) β
βπ β π«
βͺ ( M β π΄)βπ β π« βͺ ( M β π΄)(π <<s π β§ (π |s π) = π))) |
19 | 18 | ex 414 |
. 2
β’ (π΄ β On β (π β
No β (π β
( M βπ΄) β
βπ β π«
βͺ ( M β π΄)βπ β π« βͺ ( M β π΄)(π <<s π β§ (π |s π) = π)))) |
20 | 4, 11, 19 | pm5.21ndd 381 |
1
β’ (π΄ β On β (π β ( M βπ΄) β βπ β π« βͺ ( M β π΄)βπ β π« βͺ ( M β π΄)(π <<s π β§ (π |s π) = π))) |