Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmade | Structured version Visualization version GIF version |
Description: Membership in the made function. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
elmade | ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madef 34040 | . . . . 5 ⊢ M :On⟶𝒫 No | |
2 | 1 | ffvelrni 6960 | . . . 4 ⊢ (𝐴 ∈ On → ( M ‘𝐴) ∈ 𝒫 No ) |
3 | 2 | elpwid 4544 | . . 3 ⊢ (𝐴 ∈ On → ( M ‘𝐴) ⊆ No ) |
4 | 3 | sseld 3920 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) → 𝑋 ∈ No )) |
5 | scutcl 33996 | . . . . . 6 ⊢ (𝑙 <<s 𝑟 → (𝑙 |s 𝑟) ∈ No ) | |
6 | eleq1 2826 | . . . . . . 7 ⊢ ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No ↔ 𝑋 ∈ No )) | |
7 | 6 | biimpd 228 | . . . . . 6 ⊢ ((𝑙 |s 𝑟) = 𝑋 → ((𝑙 |s 𝑟) ∈ No → 𝑋 ∈ No )) |
8 | 5, 7 | mpan9 507 | . . . . 5 ⊢ ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
9 | 8 | rexlimivw 3211 | . . . 4 ⊢ (∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
10 | 9 | rexlimivw 3211 | . . 3 ⊢ (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No ) |
11 | 10 | a1i 11 | . 2 ⊢ (𝐴 ∈ On → (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋) → 𝑋 ∈ No )) |
12 | madeval2 34037 | . . . . 5 ⊢ (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)}) | |
13 | 12 | eleq2d 2824 | . . . 4 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ 𝑋 ∈ {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})) |
14 | eqeq2 2750 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑙 |s 𝑟) = 𝑥 ↔ (𝑙 |s 𝑟) = 𝑋)) | |
15 | 14 | anbi2d 629 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ (𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
16 | 15 | 2rexbidv 3229 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
17 | 16 | elrab3 3625 | . . . 4 ⊢ (𝑋 ∈ No → (𝑋 ∈ {𝑥 ∈ No ∣ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
18 | 13, 17 | sylan9bb 510 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ No ) → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
19 | 18 | ex 413 | . 2 ⊢ (𝐴 ∈ On → (𝑋 ∈ No → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋)))) |
20 | 4, 11, 19 | pm5.21ndd 381 | 1 ⊢ (𝐴 ∈ On → (𝑋 ∈ ( M ‘𝐴) ↔ ∃𝑙 ∈ 𝒫 ∪ ( M “ 𝐴)∃𝑟 ∈ 𝒫 ∪ ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {crab 3068 𝒫 cpw 4533 ∪ cuni 4839 class class class wbr 5074 “ cima 5592 Oncon0 6266 ‘cfv 6433 (class class class)co 7275 No csur 33843 <<s csslt 33975 |s cscut 33977 M cmade 34026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-1o 8297 df-2o 8298 df-no 33846 df-slt 33847 df-bday 33848 df-sslt 33976 df-scut 33978 df-made 34031 |
This theorem is referenced by: elmade2 34052 |
Copyright terms: Public domain | W3C validator |