| Step | Hyp | Ref
| Expression |
| 1 | | sge0supre.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 2 | | sge0supre.f |
. . . 4
⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| 3 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋 ∈ 𝑉) |
| 4 | 2 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞)) |
| 5 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran
𝐹) |
| 6 | 3, 4, 5 | sge0pnfval 46402 |
. . . . 5
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) →
(Σ^‘𝐹) = +∞) |
| 7 | | sge0supre.re |
. . . . . . 7
⊢ (𝜑 →
(Σ^‘𝐹) ∈ ℝ) |
| 8 | 1, 2 | sge0repnf 46415 |
. . . . . . 7
⊢ (𝜑 →
((Σ^‘𝐹) ∈ ℝ ↔ ¬
(Σ^‘𝐹) = +∞)) |
| 9 | 7, 8 | mpbid 232 |
. . . . . 6
⊢ (𝜑 → ¬
(Σ^‘𝐹) = +∞) |
| 10 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → ¬
(Σ^‘𝐹) = +∞) |
| 11 | 6, 10 | pm2.65da 816 |
. . . 4
⊢ (𝜑 → ¬ +∞ ∈ ran
𝐹) |
| 12 | 2, 11 | fge0iccico 46399 |
. . 3
⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
| 13 | 1, 12 | sge0reval 46401 |
. 2
⊢ (𝜑 →
(Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, <
)) |
| 14 | 12 | sge0rnre 46393 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆ ℝ) |
| 15 | | sge0rnn0 46397 |
. . . 4
⊢ ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ≠ ∅ |
| 16 | 15 | a1i 11 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ≠ ∅) |
| 17 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
| 18 | | eqid 2735 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
| 19 | 18 | elrnmpt 5938 |
. . . . . . . 8
⊢ (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
| 20 | 19 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
| 21 | 17, 20 | mpbid 232 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
| 22 | | simp3 1138 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
| 23 | | ressxr 11279 |
. . . . . . . . . . . . . . . 16
⊢ ℝ
⊆ ℝ* |
| 24 | 23 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ℝ ⊆
ℝ*) |
| 25 | 14, 24 | sstrd 3969 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆
ℝ*) |
| 26 | 25 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆
ℝ*) |
| 27 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) |
| 28 | | sumex 15704 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑦 ∈
𝑥 (𝐹‘𝑦) ∈ V |
| 29 | 28 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ V) |
| 30 | 18 | elrnmpt1 5940 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ V) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
| 31 | 27, 29, 30 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
| 33 | | supxrub 13340 |
. . . . . . . . . . . . 13
⊢ ((ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆ ℝ* ∧
Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, <
)) |
| 34 | 26, 32, 33 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, <
)) |
| 35 | 13 | eqcomd 2741 |
. . . . . . . . . . . . 13
⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ) =
(Σ^‘𝐹)) |
| 36 | 35 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ) =
(Σ^‘𝐹)) |
| 37 | 34, 36 | breqtrd 5145 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ≤
(Σ^‘𝐹)) |
| 38 | 37 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ≤
(Σ^‘𝐹)) |
| 39 | 22, 38 | eqbrtrd 5141 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) → 𝑤 ≤
(Σ^‘𝐹)) |
| 40 | 39 | 3exp 1119 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) → 𝑤 ≤
(Σ^‘𝐹)))) |
| 41 | 40 | rexlimdv 3139 |
. . . . . . 7
⊢ (𝜑 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) → 𝑤 ≤
(Σ^‘𝐹))) |
| 42 | 41 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) → 𝑤 ≤
(Σ^‘𝐹))) |
| 43 | 21, 42 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) → 𝑤 ≤
(Σ^‘𝐹)) |
| 44 | 43 | ralrimiva 3132 |
. . . 4
⊢ (𝜑 → ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤
(Σ^‘𝐹)) |
| 45 | | brralrspcev 5179 |
. . . 4
⊢
(((Σ^‘𝐹) ∈ ℝ ∧ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤
(Σ^‘𝐹)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) |
| 46 | 7, 44, 45 | syl2anc 584 |
. . 3
⊢ (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) |
| 47 | | supxrre 13343 |
. . 3
⊢ ((ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆ ℝ ∧ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))𝑤 ≤ 𝑧) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ) = sup(ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ, < )) |
| 48 | 14, 16, 46, 47 | syl3anc 1373 |
. 2
⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ) = sup(ran
(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ, < )) |
| 49 | 13, 48 | eqtrd 2770 |
1
⊢ (𝜑 →
(Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ, < )) |