Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0supre Structured version   Visualization version   GIF version

Theorem sge0supre 43908
Description: If the arbitrary sum of nonnegative extended reals is real, then it is the supremum (in the real numbers) of finite subsums. Similar to sge0sup 43910, but here we can use sup with respect to instead of *. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0supre.x (𝜑𝑋𝑉)
sge0supre.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0supre.re (𝜑 → (Σ^𝐹) ∈ ℝ)
Assertion
Ref Expression
sge0supre (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem sge0supre
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0supre.x . . 3 (𝜑𝑋𝑉)
2 sge0supre.f . . . 4 (𝜑𝐹:𝑋⟶(0[,]+∞))
31adantr 481 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
42adantr 481 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
5 simpr 485 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
63, 4, 5sge0pnfval 43892 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = +∞)
7 sge0supre.re . . . . . . 7 (𝜑 → (Σ^𝐹) ∈ ℝ)
81, 2sge0repnf 43905 . . . . . . 7 (𝜑 → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
97, 8mpbid 231 . . . . . 6 (𝜑 → ¬ (Σ^𝐹) = +∞)
109adantr 481 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ¬ (Σ^𝐹) = +∞)
116, 10pm2.65da 814 . . . 4 (𝜑 → ¬ +∞ ∈ ran 𝐹)
122, 11fge0iccico 43889 . . 3 (𝜑𝐹:𝑋⟶(0[,)+∞))
131, 12sge0reval 43891 . 2 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
1412sge0rnre 43883 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
15 sge0rnn0 43887 . . . 4 ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅
1615a1i 11 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅)
17 simpr 485 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
18 eqid 2738 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
1918elrnmpt 5858 . . . . . . . 8 (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦)))
2019adantl 482 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦)))
2117, 20mpbid 231 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
22 simp3 1137 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑤 = Σ𝑦𝑥 (𝐹𝑦))
23 ressxr 11029 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℝ*
2423a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ ℝ*)
2514, 24sstrd 3930 . . . . . . . . . . . . . 14 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
2625adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
27 id 22 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ (𝒫 𝑋 ∩ Fin))
28 sumex 15409 . . . . . . . . . . . . . . . 16 Σ𝑦𝑥 (𝐹𝑦) ∈ V
2928a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → Σ𝑦𝑥 (𝐹𝑦) ∈ V)
3018elrnmpt1 5860 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑦𝑥 (𝐹𝑦) ∈ V) → Σ𝑦𝑥 (𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
3127, 29, 30syl2anc 584 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → Σ𝑦𝑥 (𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
3231adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
33 supxrub 13068 . . . . . . . . . . . . 13 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* ∧ Σ𝑦𝑥 (𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → Σ𝑦𝑥 (𝐹𝑦) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
3426, 32, 33syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
3513eqcomd 2744 . . . . . . . . . . . . 13 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
3635adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
3734, 36breqtrd 5099 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (Σ^𝐹))
38373adant3 1131 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (Σ^𝐹))
3922, 38eqbrtrd 5095 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑤 ≤ (Σ^𝐹))
40393exp 1118 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑦𝑥 (𝐹𝑦) → 𝑤 ≤ (Σ^𝐹))))
4140rexlimdv 3210 . . . . . . 7 (𝜑 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → 𝑤 ≤ (Σ^𝐹)))
4241adantr 481 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → 𝑤 ≤ (Σ^𝐹)))
4321, 42mpd 15 . . . . 5 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑤 ≤ (Σ^𝐹))
4443ralrimiva 3108 . . . 4 (𝜑 → ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤 ≤ (Σ^𝐹))
45 brralrspcev 5133 . . . 4 (((Σ^𝐹) ∈ ℝ ∧ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤 ≤ (Σ^𝐹)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧)
467, 44, 45syl2anc 584 . . 3 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧)
47 supxrre 13071 . . 3 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ ∧ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
4814, 16, 46, 47syl3anc 1370 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
4913, 48eqtrd 2778 1 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3429  cin 3885  wss 3886  c0 4256  𝒫 cpw 4533   class class class wbr 5073  cmpt 5156  ran crn 5585  wf 6422  cfv 6426  (class class class)co 7267  Fincfn 8720  supcsup 9186  cr 10880  0cc0 10881  +∞cpnf 11016  *cxr 11018   < clt 11019  cle 11020  [,]cicc 13092  Σcsu 15407  Σ^csumge0 43881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-inf2 9386  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-sup 9188  df-oi 9256  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-n0 12244  df-z 12330  df-uz 12593  df-rp 12741  df-ico 13095  df-icc 13096  df-fz 13250  df-fzo 13393  df-seq 13732  df-exp 13793  df-hash 14055  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-clim 15207  df-sum 15408  df-sumge0 43882
This theorem is referenced by:  sge0ltfirp  43919  sge0resplit  43925
  Copyright terms: Public domain W3C validator