Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0supre Structured version   Visualization version   GIF version

Theorem sge0supre 46360
Description: If the arbitrary sum of nonnegative extended reals is real, then it is the supremum (in the real numbers) of finite subsums. Similar to sge0sup 46362, but here we can use sup with respect to instead of *. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0supre.x (𝜑𝑋𝑉)
sge0supre.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0supre.re (𝜑 → (Σ^𝐹) ∈ ℝ)
Assertion
Ref Expression
sge0supre (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem sge0supre
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0supre.x . . 3 (𝜑𝑋𝑉)
2 sge0supre.f . . . 4 (𝜑𝐹:𝑋⟶(0[,]+∞))
31adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝑋𝑉)
42adantr 480 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → 𝐹:𝑋⟶(0[,]+∞))
5 simpr 484 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
63, 4, 5sge0pnfval 46344 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → (Σ^𝐹) = +∞)
7 sge0supre.re . . . . . . 7 (𝜑 → (Σ^𝐹) ∈ ℝ)
81, 2sge0repnf 46357 . . . . . . 7 (𝜑 → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
97, 8mpbid 232 . . . . . 6 (𝜑 → ¬ (Σ^𝐹) = +∞)
109adantr 480 . . . . 5 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ¬ (Σ^𝐹) = +∞)
116, 10pm2.65da 816 . . . 4 (𝜑 → ¬ +∞ ∈ ran 𝐹)
122, 11fge0iccico 46341 . . 3 (𝜑𝐹:𝑋⟶(0[,)+∞))
131, 12sge0reval 46343 . 2 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
1412sge0rnre 46335 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
15 sge0rnn0 46339 . . . 4 ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅
1615a1i 11 . . 3 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅)
17 simpr 484 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
18 eqid 2729 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
1918elrnmpt 5911 . . . . . . . 8 (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦)))
2019adantl 481 . . . . . . 7 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦)))
2117, 20mpbid 232 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦))
22 simp3 1138 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑤 = Σ𝑦𝑥 (𝐹𝑦))
23 ressxr 11194 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℝ*
2423a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℝ ⊆ ℝ*)
2514, 24sstrd 3954 . . . . . . . . . . . . . 14 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
2625adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
27 id 22 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ (𝒫 𝑋 ∩ Fin))
28 sumex 15630 . . . . . . . . . . . . . . . 16 Σ𝑦𝑥 (𝐹𝑦) ∈ V
2928a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → Σ𝑦𝑥 (𝐹𝑦) ∈ V)
3018elrnmpt1 5913 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ Σ𝑦𝑥 (𝐹𝑦) ∈ V) → Σ𝑦𝑥 (𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
3127, 29, 30syl2anc 584 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → Σ𝑦𝑥 (𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
3231adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
33 supxrub 13260 . . . . . . . . . . . . 13 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* ∧ Σ𝑦𝑥 (𝐹𝑦) ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → Σ𝑦𝑥 (𝐹𝑦) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
3426, 32, 33syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ≤ sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
3513eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
3635adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = (Σ^𝐹))
3734, 36breqtrd 5128 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (Σ^𝐹))
38373adant3 1132 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (Σ^𝐹))
3922, 38eqbrtrd 5124 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑤 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑤 ≤ (Σ^𝐹))
40393exp 1119 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑤 = Σ𝑦𝑥 (𝐹𝑦) → 𝑤 ≤ (Σ^𝐹))))
4140rexlimdv 3132 . . . . . . 7 (𝜑 → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → 𝑤 ≤ (Σ^𝐹)))
4241adantr 480 . . . . . 6 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑤 = Σ𝑦𝑥 (𝐹𝑦) → 𝑤 ≤ (Σ^𝐹)))
4321, 42mpd 15 . . . . 5 ((𝜑𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑤 ≤ (Σ^𝐹))
4443ralrimiva 3125 . . . 4 (𝜑 → ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤 ≤ (Σ^𝐹))
45 brralrspcev 5162 . . . 4 (((Σ^𝐹) ∈ ℝ ∧ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤 ≤ (Σ^𝐹)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧)
467, 44, 45syl2anc 584 . . 3 (𝜑 → ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧)
47 supxrre 13263 . . 3 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ ∧ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑤𝑧) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
4814, 16, 46, 47syl3anc 1373 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
4913, 48eqtrd 2764 1 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  supcsup 9367  cr 11043  0cc0 11044  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  [,]cicc 13285  Σcsu 15628  Σ^csumge0 46333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-sumge0 46334
This theorem is referenced by:  sge0ltfirp  46371  sge0resplit  46377
  Copyright terms: Public domain W3C validator