![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0rernmpt | Structured version Visualization version GIF version |
Description: If the sum of nonnegative extended reals is not +∞ then no term is +∞. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
sge0rernmpt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0rernmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0rernmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0rernmpt.re | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) |
Ref | Expression |
---|---|
sge0rernmpt | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 11339 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ ℝ*) |
3 | pnfxr 11346 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → +∞ ∈ ℝ*) |
5 | iccssxr 13492 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
6 | sge0rernmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
7 | 5, 6 | sselid 4006 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
8 | iccgelb 13465 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵) | |
9 | 2, 4, 6, 8 | syl3anc 1371 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
10 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → ¬ 𝐵 < +∞) | |
11 | nltpnft 13228 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞)) | |
12 | 7, 11 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞)) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞)) |
14 | 10, 13 | mpbird 257 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → 𝐵 = +∞) |
15 | 14 | eqcomd 2746 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → +∞ = 𝐵) |
16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
17 | eqid 2740 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
18 | 17 | elrnmpt1 5985 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
19 | 16, 6, 18 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
20 | 19 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
21 | 15, 20 | eqeltrd 2844 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → +∞ ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
22 | sge0rernmpt.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
23 | sge0rernmpt.xph | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
24 | 23, 6, 17 | fmptdf 7153 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
25 | sge0rernmpt.re | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) | |
26 | 22, 24, 25 | sge0rern 46311 | . . . 4 ⊢ (𝜑 → ¬ +∞ ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
27 | 26 | ad2antrr 725 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → ¬ +∞ ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
28 | 21, 27 | condan 817 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 < +∞) |
29 | 2, 4, 7, 9, 28 | elicod 13459 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 ‘cfv 6575 (class class class)co 7450 ℝcr 11185 0cc0 11186 +∞cpnf 11323 ℝ*cxr 11325 < clt 11326 ≤ cle 11327 [,)cico 13411 [,]cicc 13412 Σ^csumge0 46285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-inf2 9712 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-sup 9513 df-oi 9581 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-n0 12556 df-z 12642 df-uz 12906 df-rp 13060 df-ico 13415 df-icc 13416 df-fz 13570 df-fzo 13714 df-seq 14055 df-exp 14115 df-hash 14382 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-clim 15536 df-sum 15737 df-sumge0 46286 |
This theorem is referenced by: sge0ltfirpmpt2 46349 sge0xadd 46358 |
Copyright terms: Public domain | W3C validator |