Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0rernmpt Structured version   Visualization version   GIF version

Theorem sge0rernmpt 45124
Description: If the sum of nonnegative extended reals is not +∞ then no term is +∞. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0rernmpt.xph 𝑥𝜑
sge0rernmpt.a (𝜑𝐴𝑉)
sge0rernmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0rernmpt.re (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
Assertion
Ref Expression
sge0rernmpt ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sge0rernmpt
StepHypRef Expression
1 0xr 11257 . . 3 0 ∈ ℝ*
21a1i 11 . 2 ((𝜑𝑥𝐴) → 0 ∈ ℝ*)
3 pnfxr 11264 . . 3 +∞ ∈ ℝ*
43a1i 11 . 2 ((𝜑𝑥𝐴) → +∞ ∈ ℝ*)
5 iccssxr 13403 . . 3 (0[,]+∞) ⊆ ℝ*
6 sge0rernmpt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
75, 6sselid 3979 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
8 iccgelb 13376 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
92, 4, 6, 8syl3anc 1371 . 2 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
10 simpr 485 . . . . . 6 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → ¬ 𝐵 < +∞)
11 nltpnft 13139 . . . . . . . 8 (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
127, 11syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
1312adantr 481 . . . . . 6 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
1410, 13mpbird 256 . . . . 5 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → 𝐵 = +∞)
1514eqcomd 2738 . . . 4 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → +∞ = 𝐵)
16 simpr 485 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
17 eqid 2732 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1817elrnmpt1 5955 . . . . . 6 ((𝑥𝐴𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1916, 6, 18syl2anc 584 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2019adantr 481 . . . 4 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2115, 20eqeltrd 2833 . . 3 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → +∞ ∈ ran (𝑥𝐴𝐵))
22 sge0rernmpt.a . . . . 5 (𝜑𝐴𝑉)
23 sge0rernmpt.xph . . . . . 6 𝑥𝜑
2423, 6, 17fmptdf 7113 . . . . 5 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
25 sge0rernmpt.re . . . . 5 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
2622, 24, 25sge0rern 45090 . . . 4 (𝜑 → ¬ +∞ ∈ ran (𝑥𝐴𝐵))
2726ad2antrr 724 . . 3 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → ¬ +∞ ∈ ran (𝑥𝐴𝐵))
2821, 27condan 816 . 2 ((𝜑𝑥𝐴) → 𝐵 < +∞)
292, 4, 7, 9, 28elicod 13370 1 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106   class class class wbr 5147  cmpt 5230  ran crn 5676  cfv 6540  (class class class)co 7405  cr 11105  0cc0 11106  +∞cpnf 11241  *cxr 11243   < clt 11244  cle 11245  [,)cico 13322  [,]cicc 13323  Σ^csumge0 45064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-sumge0 45065
This theorem is referenced by:  sge0ltfirpmpt2  45128  sge0xadd  45137
  Copyright terms: Public domain W3C validator