Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0rernmpt Structured version   Visualization version   GIF version

Theorem sge0rernmpt 46370
Description: If the sum of nonnegative extended reals is not +∞ then no term is +∞. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0rernmpt.xph 𝑥𝜑
sge0rernmpt.a (𝜑𝐴𝑉)
sge0rernmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
sge0rernmpt.re (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
Assertion
Ref Expression
sge0rernmpt ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem sge0rernmpt
StepHypRef Expression
1 0xr 11289 . . 3 0 ∈ ℝ*
21a1i 11 . 2 ((𝜑𝑥𝐴) → 0 ∈ ℝ*)
3 pnfxr 11296 . . 3 +∞ ∈ ℝ*
43a1i 11 . 2 ((𝜑𝑥𝐴) → +∞ ∈ ℝ*)
5 iccssxr 13451 . . 3 (0[,]+∞) ⊆ ℝ*
6 sge0rernmpt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,]+∞))
75, 6sselid 3961 . 2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
8 iccgelb 13424 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
92, 4, 6, 8syl3anc 1372 . 2 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
10 simpr 484 . . . . . 6 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → ¬ 𝐵 < +∞)
11 nltpnft 13187 . . . . . . . 8 (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
127, 11syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
1312adantr 480 . . . . . 6 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
1410, 13mpbird 257 . . . . 5 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → 𝐵 = +∞)
1514eqcomd 2740 . . . 4 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → +∞ = 𝐵)
16 simpr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥𝐴)
17 eqid 2734 . . . . . . 7 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
1817elrnmpt1 5951 . . . . . 6 ((𝑥𝐴𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1916, 6, 18syl2anc 584 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2019adantr 480 . . . 4 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2115, 20eqeltrd 2833 . . 3 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → +∞ ∈ ran (𝑥𝐴𝐵))
22 sge0rernmpt.a . . . . 5 (𝜑𝐴𝑉)
23 sge0rernmpt.xph . . . . . 6 𝑥𝜑
2423, 6, 17fmptdf 7116 . . . . 5 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,]+∞))
25 sge0rernmpt.re . . . . 5 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) ∈ ℝ)
2622, 24, 25sge0rern 46336 . . . 4 (𝜑 → ¬ +∞ ∈ ran (𝑥𝐴𝐵))
2726ad2antrr 726 . . 3 (((𝜑𝑥𝐴) ∧ ¬ 𝐵 < +∞) → ¬ +∞ ∈ ran (𝑥𝐴𝐵))
2821, 27condan 817 . 2 ((𝜑𝑥𝐴) → 𝐵 < +∞)
292, 4, 7, 9, 28elicod 13418 1 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wnf 1782  wcel 2107   class class class wbr 5123  cmpt 5205  ran crn 5666  cfv 6540  (class class class)co 7412  cr 11135  0cc0 11136  +∞cpnf 11273  *cxr 11275   < clt 11276  cle 11277  [,)cico 13370  [,]cicc 13371  Σ^csumge0 46310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9463  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-3 12311  df-n0 12509  df-z 12596  df-uz 12860  df-rp 13016  df-ico 13374  df-icc 13375  df-fz 13529  df-fzo 13676  df-seq 14024  df-exp 14084  df-hash 14351  df-cj 15119  df-re 15120  df-im 15121  df-sqrt 15255  df-abs 15256  df-clim 15505  df-sum 15704  df-sumge0 46311
This theorem is referenced by:  sge0ltfirpmpt2  46374  sge0xadd  46383
  Copyright terms: Public domain W3C validator