Proof of Theorem wtgoldbnnsum4prm
Step | Hyp | Ref
| Expression |
1 | | 2z 12282 |
. . . . . . 7
⊢ 2 ∈
ℤ |
2 | | 9nn 12001 |
. . . . . . . 8
⊢ 9 ∈
ℕ |
3 | 2 | nnzi 12274 |
. . . . . . 7
⊢ 9 ∈
ℤ |
4 | | 2re 11977 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
5 | | 9re 12002 |
. . . . . . . 8
⊢ 9 ∈
ℝ |
6 | | 2lt9 12108 |
. . . . . . . 8
⊢ 2 <
9 |
7 | 4, 5, 6 | ltleii 11028 |
. . . . . . 7
⊢ 2 ≤
9 |
8 | | eluz2 12517 |
. . . . . . 7
⊢ (9 ∈
(ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 9 ∈
ℤ ∧ 2 ≤ 9)) |
9 | 1, 3, 7, 8 | mpbir3an 1339 |
. . . . . 6
⊢ 9 ∈
(ℤ≥‘2) |
10 | | fzouzsplit 13350 |
. . . . . . 7
⊢ (9 ∈
(ℤ≥‘2) → (ℤ≥‘2) =
((2..^9) ∪ (ℤ≥‘9))) |
11 | 10 | eleq2d 2824 |
. . . . . 6
⊢ (9 ∈
(ℤ≥‘2) → (𝑛 ∈ (ℤ≥‘2)
↔ 𝑛 ∈ ((2..^9)
∪ (ℤ≥‘9)))) |
12 | 9, 11 | ax-mp 5 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘2) ↔ 𝑛 ∈ ((2..^9) ∪
(ℤ≥‘9))) |
13 | | elun 4079 |
. . . . 5
⊢ (𝑛 ∈ ((2..^9) ∪
(ℤ≥‘9)) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈
(ℤ≥‘9))) |
14 | 12, 13 | bitri 274 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘2) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈
(ℤ≥‘9))) |
15 | | elfzo2 13319 |
. . . . . . . 8
⊢ (𝑛 ∈ (2..^9) ↔ (𝑛 ∈
(ℤ≥‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9)) |
16 | | simp1 1134 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ∈
(ℤ≥‘2)) |
17 | | df-9 11973 |
. . . . . . . . . . . 12
⊢ 9 = (8 +
1) |
18 | 17 | breq2i 5078 |
. . . . . . . . . . 11
⊢ (𝑛 < 9 ↔ 𝑛 < (8 + 1)) |
19 | | eluz2nn 12553 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(ℤ≥‘2) → 𝑛 ∈ ℕ) |
20 | | 8nn 11998 |
. . . . . . . . . . . . . . 15
⊢ 8 ∈
ℕ |
21 | 19, 20 | jctir 520 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘2) → (𝑛 ∈ ℕ ∧ 8 ∈
ℕ)) |
22 | 21 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘2) ∧ 9 ∈ ℤ) → (𝑛 ∈ ℕ ∧ 8 ∈
ℕ)) |
23 | | nnleltp1 12305 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ ∧ 8 ∈
ℕ) → (𝑛 ≤ 8
↔ 𝑛 < (8 +
1))) |
24 | 22, 23 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈
(ℤ≥‘2) ∧ 9 ∈ ℤ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1))) |
25 | 24 | biimprd 247 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈
(ℤ≥‘2) ∧ 9 ∈ ℤ) → (𝑛 < (8 + 1) → 𝑛 ≤ 8)) |
26 | 18, 25 | syl5bi 241 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘2) ∧ 9 ∈ ℤ) → (𝑛 < 9 → 𝑛 ≤ 8)) |
27 | 26 | 3impia 1115 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ≤ 8) |
28 | 16, 27 | jca 511 |
. . . . . . . 8
⊢ ((𝑛 ∈
(ℤ≥‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → (𝑛 ∈
(ℤ≥‘2) ∧ 𝑛 ≤ 8)) |
29 | 15, 28 | sylbi 216 |
. . . . . . 7
⊢ (𝑛 ∈ (2..^9) → (𝑛 ∈
(ℤ≥‘2) ∧ 𝑛 ≤ 8)) |
30 | | nnsum4primesle9 45135 |
. . . . . . 7
⊢ ((𝑛 ∈
(ℤ≥‘2) ∧ 𝑛 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m
(1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
31 | 29, 30 | syl 17 |
. . . . . 6
⊢ (𝑛 ∈ (2..^9) →
∃𝑑 ∈ ℕ
∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
32 | 31 | a1d 25 |
. . . . 5
⊢ (𝑛 ∈ (2..^9) →
(∀𝑚 ∈ Odd (5
< 𝑚 → 𝑚 ∈ GoldbachOddW ) →
∃𝑑 ∈ ℕ
∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)))) |
33 | | 4nn 11986 |
. . . . . . . . 9
⊢ 4 ∈
ℕ |
34 | 33 | a1i 11 |
. . . . . . . 8
⊢ (((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) → 4 ∈
ℕ) |
35 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑑 = 4 → (1...𝑑) = (1...4)) |
36 | 35 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑑 = 4 → (ℙ
↑m (1...𝑑))
= (ℙ ↑m (1...4))) |
37 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑑 = 4 → (𝑑 ≤ 4 ↔ 4 ≤ 4)) |
38 | 35 | sumeq1d 15341 |
. . . . . . . . . . . 12
⊢ (𝑑 = 4 → Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) = Σ𝑘 ∈ (1...4)(𝑓‘𝑘)) |
39 | 38 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑑 = 4 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) |
40 | 37, 39 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑑 = 4 → ((𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ (4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘)))) |
41 | 36, 40 | rexeqbidv 3328 |
. . . . . . . . 9
⊢ (𝑑 = 4 → (∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m
(1...4))(4 ≤ 4 ∧ 𝑛 =
Σ𝑘 ∈
(1...4)(𝑓‘𝑘)))) |
42 | 41 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) ∧ 𝑑 = 4) → (∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m
(1...4))(4 ≤ 4 ∧ 𝑛 =
Σ𝑘 ∈
(1...4)(𝑓‘𝑘)))) |
43 | | 4re 11987 |
. . . . . . . . . . 11
⊢ 4 ∈
ℝ |
44 | 43 | leidi 11439 |
. . . . . . . . . 10
⊢ 4 ≤
4 |
45 | 44 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) → 4 ≤
4) |
46 | | nnsum4primeseven 45140 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) →
((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Even ) → ∃𝑓 ∈ (ℙ
↑m (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) |
47 | 46 | impcom 407 |
. . . . . . . . 9
⊢ (((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ
↑m (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘)) |
48 | | r19.42v 3276 |
. . . . . . . . 9
⊢
(∃𝑓 ∈
(ℙ ↑m (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘)) ↔ (4 ≤ 4 ∧ ∃𝑓 ∈ (ℙ
↑m (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) |
49 | 45, 47, 48 | sylanbrc 582 |
. . . . . . . 8
⊢ (((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ
↑m (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) |
50 | 34, 42, 49 | rspcedvd 3555 |
. . . . . . 7
⊢ (((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
51 | 50 | ex 412 |
. . . . . 6
⊢ ((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Even ) → (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)))) |
52 | | 3nn 11982 |
. . . . . . . . 9
⊢ 3 ∈
ℕ |
53 | 52 | a1i 11 |
. . . . . . . 8
⊢ (((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) → 3 ∈
ℕ) |
54 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑑 = 3 → (1...𝑑) = (1...3)) |
55 | 54 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑑 = 3 → (ℙ
↑m (1...𝑑))
= (ℙ ↑m (1...3))) |
56 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑑 = 3 → (𝑑 ≤ 4 ↔ 3 ≤ 4)) |
57 | 54 | sumeq1d 15341 |
. . . . . . . . . . . 12
⊢ (𝑑 = 3 → Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) = Σ𝑘 ∈ (1...3)(𝑓‘𝑘)) |
58 | 57 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑑 = 3 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
59 | 56, 58 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑑 = 3 → ((𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ (3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘)))) |
60 | 55, 59 | rexeqbidv 3328 |
. . . . . . . . 9
⊢ (𝑑 = 3 → (∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m
(1...3))(3 ≤ 4 ∧ 𝑛 =
Σ𝑘 ∈
(1...3)(𝑓‘𝑘)))) |
61 | 60 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) ∧ 𝑑 = 3) → (∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m
(1...3))(3 ≤ 4 ∧ 𝑛 =
Σ𝑘 ∈
(1...3)(𝑓‘𝑘)))) |
62 | | 3re 11983 |
. . . . . . . . . . 11
⊢ 3 ∈
ℝ |
63 | | 3lt4 12077 |
. . . . . . . . . . 11
⊢ 3 <
4 |
64 | 62, 43, 63 | ltleii 11028 |
. . . . . . . . . 10
⊢ 3 ≤
4 |
65 | 64 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) → 3 ≤
4) |
66 | | 6nn 11992 |
. . . . . . . . . . . . 13
⊢ 6 ∈
ℕ |
67 | 66 | nnzi 12274 |
. . . . . . . . . . . 12
⊢ 6 ∈
ℤ |
68 | | 6re 11993 |
. . . . . . . . . . . . 13
⊢ 6 ∈
ℝ |
69 | | 6lt9 12104 |
. . . . . . . . . . . . 13
⊢ 6 <
9 |
70 | 68, 5, 69 | ltleii 11028 |
. . . . . . . . . . . 12
⊢ 6 ≤
9 |
71 | | eluzuzle 12520 |
. . . . . . . . . . . 12
⊢ ((6
∈ ℤ ∧ 6 ≤ 9) → (𝑛 ∈ (ℤ≥‘9)
→ 𝑛 ∈
(ℤ≥‘6))) |
72 | 67, 70, 71 | mp2an 688 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘9) → 𝑛 ∈
(ℤ≥‘6)) |
73 | 72 | anim1i 614 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Odd ) → (𝑛 ∈ (ℤ≥‘6)
∧ 𝑛 ∈ Odd
)) |
74 | | nnsum4primesodd 45136 |
. . . . . . . . . 10
⊢
(∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) →
((𝑛 ∈
(ℤ≥‘6) ∧ 𝑛 ∈ Odd ) → ∃𝑓 ∈ (ℙ
↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
75 | 73, 74 | mpan9 506 |
. . . . . . . . 9
⊢ (((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ
↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘)) |
76 | | r19.42v 3276 |
. . . . . . . . 9
⊢
(∃𝑓 ∈
(ℙ ↑m (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘)) ↔ (3 ≤ 4 ∧ ∃𝑓 ∈ (ℙ
↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
77 | 65, 75, 76 | sylanbrc 582 |
. . . . . . . 8
⊢ (((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ
↑m (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) |
78 | 53, 61, 77 | rspcedvd 3555 |
. . . . . . 7
⊢ (((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
79 | 78 | ex 412 |
. . . . . 6
⊢ ((𝑛 ∈
(ℤ≥‘9) ∧ 𝑛 ∈ Odd ) → (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)))) |
80 | | eluzelz 12521 |
. . . . . . 7
⊢ (𝑛 ∈
(ℤ≥‘9) → 𝑛 ∈ ℤ) |
81 | | zeoALTV 45010 |
. . . . . . 7
⊢ (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd )) |
82 | 80, 81 | syl 17 |
. . . . . 6
⊢ (𝑛 ∈
(ℤ≥‘9) → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd )) |
83 | 51, 79, 82 | mpjaodan 955 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘9) → (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)))) |
84 | 32, 83 | jaoi 853 |
. . . 4
⊢ ((𝑛 ∈ (2..^9) ∨ 𝑛 ∈
(ℤ≥‘9)) → (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)))) |
85 | 14, 84 | sylbi 216 |
. . 3
⊢ (𝑛 ∈
(ℤ≥‘2) → (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)))) |
86 | 85 | impcom 407 |
. 2
⊢
((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
𝑛 ∈
(ℤ≥‘2)) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m
(1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
87 | 86 | ralrimiva 3107 |
1
⊢
(∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) →
∀𝑛 ∈
(ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m
(1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |