Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wtgoldbnnsum4prm Structured version   Visualization version   GIF version

Theorem wtgoldbnnsum4prm 43275
Description: If the (weak) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes, showing that Schnirelmann's constant would be less than or equal to 4. See corollary 1.1 in [Helfgott] p. 4. (Contributed by AV, 25-Jul-2020.)
Assertion
Ref Expression
wtgoldbnnsum4prm (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑘,𝑚,𝑑,𝑛

Proof of Theorem wtgoldbnnsum4prm
StepHypRef Expression
1 2z 11820 . . . . . . 7 2 ∈ ℤ
2 9nn 11537 . . . . . . . 8 9 ∈ ℕ
32nnzi 11812 . . . . . . 7 9 ∈ ℤ
4 2re 11507 . . . . . . . 8 2 ∈ ℝ
5 9re 11538 . . . . . . . 8 9 ∈ ℝ
6 2lt9 11645 . . . . . . . 8 2 < 9
74, 5, 6ltleii 10555 . . . . . . 7 2 ≤ 9
8 eluz2 12057 . . . . . . 7 (9 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9))
91, 3, 7, 8mpbir3an 1321 . . . . . 6 9 ∈ (ℤ‘2)
10 fzouzsplit 12880 . . . . . . 7 (9 ∈ (ℤ‘2) → (ℤ‘2) = ((2..^9) ∪ (ℤ‘9)))
1110eleq2d 2845 . . . . . 6 (9 ∈ (ℤ‘2) → (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9))))
129, 11ax-mp 5 . . . . 5 (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9)))
13 elun 4010 . . . . 5 (𝑛 ∈ ((2..^9) ∪ (ℤ‘9)) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
1412, 13bitri 267 . . . 4 (𝑛 ∈ (ℤ‘2) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
15 elfzo2 12850 . . . . . . . 8 (𝑛 ∈ (2..^9) ↔ (𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9))
16 simp1 1116 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ∈ (ℤ‘2))
17 df-9 11503 . . . . . . . . . . . 12 9 = (8 + 1)
1817breq2i 4931 . . . . . . . . . . 11 (𝑛 < 9 ↔ 𝑛 < (8 + 1))
19 eluz2nn 12091 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
20 8nn 11533 . . . . . . . . . . . . . . 15 8 ∈ ℕ
2119, 20jctir 513 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘2) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
2221adantr 473 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
23 nnleltp1 11843 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 8 ∈ ℕ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2422, 23syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2524biimprd 240 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < (8 + 1) → 𝑛 ≤ 8))
2618, 25syl5bi 234 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < 9 → 𝑛 ≤ 8))
27263impia 1097 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ≤ 8)
2816, 27jca 504 . . . . . . . 8 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
2915, 28sylbi 209 . . . . . . 7 (𝑛 ∈ (2..^9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
30 nnsum4primesle9 43268 . . . . . . 7 ((𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3129, 30syl 17 . . . . . 6 (𝑛 ∈ (2..^9) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3231a1d 25 . . . . 5 (𝑛 ∈ (2..^9) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
33 4nn 11517 . . . . . . . . 9 4 ∈ ℕ
3433a1i 11 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 4 ∈ ℕ)
35 oveq2 6978 . . . . . . . . . . 11 (𝑑 = 4 → (1...𝑑) = (1...4))
3635oveq2d 6986 . . . . . . . . . 10 (𝑑 = 4 → (ℙ ↑𝑚 (1...𝑑)) = (ℙ ↑𝑚 (1...4)))
37 breq1 4926 . . . . . . . . . . 11 (𝑑 = 4 → (𝑑 ≤ 4 ↔ 4 ≤ 4))
3835sumeq1d 14908 . . . . . . . . . . . 12 (𝑑 = 4 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ (1...4)(𝑓𝑘))
3938eqeq2d 2782 . . . . . . . . . . 11 (𝑑 = 4 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
4037, 39anbi12d 621 . . . . . . . . . 10 (𝑑 = 4 → ((𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
4136, 40rexeqbidv 3336 . . . . . . . . 9 (𝑑 = 4 → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
4241adantl 474 . . . . . . . 8 ((((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) ∧ 𝑑 = 4) → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
43 4re 11518 . . . . . . . . . . 11 4 ∈ ℝ
4443leidi 10967 . . . . . . . . . 10 4 ≤ 4
4544a1i 11 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 4 ≤ 4)
46 nnsum4primeseven 43273 . . . . . . . . . 10 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
4746impcom 399 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
48 r19.42v 3285 . . . . . . . . 9 (∃𝑓 ∈ (ℙ ↑𝑚 (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)) ↔ (4 ≤ 4 ∧ ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
4945, 47, 48sylanbrc 575 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
5034, 42, 49rspcedvd 3536 . . . . . . 7 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
5150ex 405 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
52 3nn 11512 . . . . . . . . 9 3 ∈ ℕ
5352a1i 11 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 3 ∈ ℕ)
54 oveq2 6978 . . . . . . . . . . 11 (𝑑 = 3 → (1...𝑑) = (1...3))
5554oveq2d 6986 . . . . . . . . . 10 (𝑑 = 3 → (ℙ ↑𝑚 (1...𝑑)) = (ℙ ↑𝑚 (1...3)))
56 breq1 4926 . . . . . . . . . . 11 (𝑑 = 3 → (𝑑 ≤ 4 ↔ 3 ≤ 4))
5754sumeq1d 14908 . . . . . . . . . . . 12 (𝑑 = 3 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ (1...3)(𝑓𝑘))
5857eqeq2d 2782 . . . . . . . . . . 11 (𝑑 = 3 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
5956, 58anbi12d 621 . . . . . . . . . 10 (𝑑 = 3 → ((𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6055, 59rexeqbidv 3336 . . . . . . . . 9 (𝑑 = 3 → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6160adantl 474 . . . . . . . 8 ((((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) ∧ 𝑑 = 3) → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
62 3re 11513 . . . . . . . . . . 11 3 ∈ ℝ
63 3lt4 11614 . . . . . . . . . . 11 3 < 4
6462, 43, 63ltleii 10555 . . . . . . . . . 10 3 ≤ 4
6564a1i 11 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 3 ≤ 4)
66 6nn 11525 . . . . . . . . . . . . 13 6 ∈ ℕ
6766nnzi 11812 . . . . . . . . . . . 12 6 ∈ ℤ
68 6re 11526 . . . . . . . . . . . . 13 6 ∈ ℝ
69 6lt9 11641 . . . . . . . . . . . . 13 6 < 9
7068, 5, 69ltleii 10555 . . . . . . . . . . . 12 6 ≤ 9
71 eluzuzle 12060 . . . . . . . . . . . 12 ((6 ∈ ℤ ∧ 6 ≤ 9) → (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6)))
7267, 70, 71mp2an 679 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6))
7372anim1i 605 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ))
74 nnsum4primesodd 43269 . . . . . . . . . 10 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7573, 74mpan9 499 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
76 r19.42v 3285 . . . . . . . . 9 (∃𝑓 ∈ (ℙ ↑𝑚 (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)) ↔ (3 ≤ 4 ∧ ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7765, 75, 76sylanbrc 575 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7853, 61, 77rspcedvd 3536 . . . . . . 7 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
7978ex 405 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
80 eluzelz 12061 . . . . . . 7 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ ℤ)
81 zeoALTV 43143 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8280, 81syl 17 . . . . . 6 (𝑛 ∈ (ℤ‘9) → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8351, 79, 82mpjaodan 941 . . . . 5 (𝑛 ∈ (ℤ‘9) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8432, 83jaoi 843 . . . 4 ((𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8514, 84sylbi 209 . . 3 (𝑛 ∈ (ℤ‘2) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8685impcom 399 . 2 ((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ 𝑛 ∈ (ℤ‘2)) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
8786ralrimiva 3126 1 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wcel 2048  wral 3082  wrex 3083  cun 3823   class class class wbr 4923  cfv 6182  (class class class)co 6970  𝑚 cmap 8198  1c1 10328   + caddc 10330   < clt 10466  cle 10467  cn 11431  2c2 11488  3c3 11489  4c4 11490  5c5 11491  6c6 11492  8c8 11494  9c9 11495  cz 11786  cuz 12051  ...cfz 12701  ..^cfzo 12842  Σcsu 14893  cprime 15861   Even ceven 43097   Odd codd 43098   GoldbachOddW cgbow 43219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-sup 8693  df-inf 8694  df-oi 8761  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-rp 12198  df-fz 12702  df-fzo 12843  df-seq 13178  df-exp 13238  df-hash 13499  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-clim 14696  df-sum 14894  df-dvds 15458  df-prm 15862  df-even 43099  df-odd 43100  df-gbe 43221  df-gbow 43222
This theorem is referenced by:  stgoldbnnsum4prm  43276
  Copyright terms: Public domain W3C validator