Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wtgoldbnnsum4prm Structured version   Visualization version   GIF version

Theorem wtgoldbnnsum4prm 47676
Description: If the (weak) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes, showing that Schnirelmann's constant would be less than or equal to 4. See corollary 1.1 in [Helfgott] p. 4. (Contributed by AV, 25-Jul-2020.)
Assertion
Ref Expression
wtgoldbnnsum4prm (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑘,𝑚,𝑑,𝑛

Proof of Theorem wtgoldbnnsum4prm
StepHypRef Expression
1 2z 12675 . . . . . . 7 2 ∈ ℤ
2 9nn 12391 . . . . . . . 8 9 ∈ ℕ
32nnzi 12667 . . . . . . 7 9 ∈ ℤ
4 2re 12367 . . . . . . . 8 2 ∈ ℝ
5 9re 12392 . . . . . . . 8 9 ∈ ℝ
6 2lt9 12498 . . . . . . . 8 2 < 9
74, 5, 6ltleii 11413 . . . . . . 7 2 ≤ 9
8 eluz2 12909 . . . . . . 7 (9 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9))
91, 3, 7, 8mpbir3an 1341 . . . . . 6 9 ∈ (ℤ‘2)
10 fzouzsplit 13751 . . . . . . 7 (9 ∈ (ℤ‘2) → (ℤ‘2) = ((2..^9) ∪ (ℤ‘9)))
1110eleq2d 2830 . . . . . 6 (9 ∈ (ℤ‘2) → (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9))))
129, 11ax-mp 5 . . . . 5 (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9)))
13 elun 4176 . . . . 5 (𝑛 ∈ ((2..^9) ∪ (ℤ‘9)) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
1412, 13bitri 275 . . . 4 (𝑛 ∈ (ℤ‘2) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
15 elfzo2 13719 . . . . . . . 8 (𝑛 ∈ (2..^9) ↔ (𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9))
16 simp1 1136 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ∈ (ℤ‘2))
17 df-9 12363 . . . . . . . . . . . 12 9 = (8 + 1)
1817breq2i 5174 . . . . . . . . . . 11 (𝑛 < 9 ↔ 𝑛 < (8 + 1))
19 eluz2nn 12949 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
20 8nn 12388 . . . . . . . . . . . . . . 15 8 ∈ ℕ
2119, 20jctir 520 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘2) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
2221adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
23 nnleltp1 12698 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 8 ∈ ℕ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2422, 23syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2524biimprd 248 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < (8 + 1) → 𝑛 ≤ 8))
2618, 25biimtrid 242 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < 9 → 𝑛 ≤ 8))
27263impia 1117 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ≤ 8)
2816, 27jca 511 . . . . . . . 8 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
2915, 28sylbi 217 . . . . . . 7 (𝑛 ∈ (2..^9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
30 nnsum4primesle9 47669 . . . . . . 7 ((𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3129, 30syl 17 . . . . . 6 (𝑛 ∈ (2..^9) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3231a1d 25 . . . . 5 (𝑛 ∈ (2..^9) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
33 4nn 12376 . . . . . . . . 9 4 ∈ ℕ
3433a1i 11 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 4 ∈ ℕ)
35 oveq2 7456 . . . . . . . . . . 11 (𝑑 = 4 → (1...𝑑) = (1...4))
3635oveq2d 7464 . . . . . . . . . 10 (𝑑 = 4 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m (1...4)))
37 breq1 5169 . . . . . . . . . . 11 (𝑑 = 4 → (𝑑 ≤ 4 ↔ 4 ≤ 4))
3835sumeq1d 15748 . . . . . . . . . . . 12 (𝑑 = 4 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ (1...4)(𝑓𝑘))
3938eqeq2d 2751 . . . . . . . . . . 11 (𝑑 = 4 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
4037, 39anbi12d 631 . . . . . . . . . 10 (𝑑 = 4 → ((𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
4136, 40rexeqbidv 3355 . . . . . . . . 9 (𝑑 = 4 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
4241adantl 481 . . . . . . . 8 ((((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) ∧ 𝑑 = 4) → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
43 4re 12377 . . . . . . . . . . 11 4 ∈ ℝ
4443leidi 11824 . . . . . . . . . 10 4 ≤ 4
4544a1i 11 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 4 ≤ 4)
46 nnsum4primeseven 47674 . . . . . . . . . 10 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
4746impcom 407 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
48 r19.42v 3197 . . . . . . . . 9 (∃𝑓 ∈ (ℙ ↑m (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)) ↔ (4 ≤ 4 ∧ ∃𝑓 ∈ (ℙ ↑m (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
4945, 47, 48sylanbrc 582 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑m (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
5034, 42, 49rspcedvd 3637 . . . . . . 7 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
5150ex 412 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
52 3nn 12372 . . . . . . . . 9 3 ∈ ℕ
5352a1i 11 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 3 ∈ ℕ)
54 oveq2 7456 . . . . . . . . . . 11 (𝑑 = 3 → (1...𝑑) = (1...3))
5554oveq2d 7464 . . . . . . . . . 10 (𝑑 = 3 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m (1...3)))
56 breq1 5169 . . . . . . . . . . 11 (𝑑 = 3 → (𝑑 ≤ 4 ↔ 3 ≤ 4))
5754sumeq1d 15748 . . . . . . . . . . . 12 (𝑑 = 3 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ (1...3)(𝑓𝑘))
5857eqeq2d 2751 . . . . . . . . . . 11 (𝑑 = 3 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
5956, 58anbi12d 631 . . . . . . . . . 10 (𝑑 = 3 → ((𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6055, 59rexeqbidv 3355 . . . . . . . . 9 (𝑑 = 3 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6160adantl 481 . . . . . . . 8 ((((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) ∧ 𝑑 = 3) → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
62 3re 12373 . . . . . . . . . . 11 3 ∈ ℝ
63 3lt4 12467 . . . . . . . . . . 11 3 < 4
6462, 43, 63ltleii 11413 . . . . . . . . . 10 3 ≤ 4
6564a1i 11 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 3 ≤ 4)
66 6nn 12382 . . . . . . . . . . . . 13 6 ∈ ℕ
6766nnzi 12667 . . . . . . . . . . . 12 6 ∈ ℤ
68 6re 12383 . . . . . . . . . . . . 13 6 ∈ ℝ
69 6lt9 12494 . . . . . . . . . . . . 13 6 < 9
7068, 5, 69ltleii 11413 . . . . . . . . . . . 12 6 ≤ 9
71 eluzuzle 12912 . . . . . . . . . . . 12 ((6 ∈ ℤ ∧ 6 ≤ 9) → (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6)))
7267, 70, 71mp2an 691 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6))
7372anim1i 614 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ))
74 nnsum4primesodd 47670 . . . . . . . . . 10 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7573, 74mpan9 506 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
76 r19.42v 3197 . . . . . . . . 9 (∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)) ↔ (3 ≤ 4 ∧ ∃𝑓 ∈ (ℙ ↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7765, 75, 76sylanbrc 582 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7853, 61, 77rspcedvd 3637 . . . . . . 7 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
7978ex 412 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
80 eluzelz 12913 . . . . . . 7 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ ℤ)
81 zeoALTV 47544 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8280, 81syl 17 . . . . . 6 (𝑛 ∈ (ℤ‘9) → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8351, 79, 82mpjaodan 959 . . . . 5 (𝑛 ∈ (ℤ‘9) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8432, 83jaoi 856 . . . 4 ((𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8514, 84sylbi 217 . . 3 (𝑛 ∈ (ℤ‘2) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8685impcom 407 . 2 ((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ 𝑛 ∈ (ℤ‘2)) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
8786ralrimiva 3152 1 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cun 3974   class class class wbr 5166  cfv 6573  (class class class)co 7448  m cmap 8884  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cn 12293  2c2 12348  3c3 12349  4c4 12350  5c5 12351  6c6 12352  8c8 12354  9c9 12355  cz 12639  cuz 12903  ...cfz 13567  ..^cfzo 13711  Σcsu 15734  cprime 16718   Even ceven 47498   Odd codd 47499   GoldbachOddW cgbow 47620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-prm 16719  df-even 47500  df-odd 47501  df-gbe 47622  df-gbow 47623
This theorem is referenced by:  stgoldbnnsum4prm  47677
  Copyright terms: Public domain W3C validator