Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbnnsum3prm Structured version   Visualization version   GIF version

Theorem bgoldbnnsum3prm 47728
Description: If the binary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 3 primes, showing that Schnirelmann's constant would be equal to 3. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
bgoldbnnsum3prm (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑘,𝑚,𝑑,𝑛

Proof of Theorem bgoldbnnsum3prm
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 2z 12646 . . . . . . 7 2 ∈ ℤ
2 9nn 12361 . . . . . . . 8 9 ∈ ℕ
32nnzi 12638 . . . . . . 7 9 ∈ ℤ
4 2re 12337 . . . . . . . 8 2 ∈ ℝ
5 9re 12362 . . . . . . . 8 9 ∈ ℝ
6 2lt9 12468 . . . . . . . 8 2 < 9
74, 5, 6ltleii 11381 . . . . . . 7 2 ≤ 9
8 eluz2 12881 . . . . . . 7 (9 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9))
91, 3, 7, 8mpbir3an 1340 . . . . . 6 9 ∈ (ℤ‘2)
10 fzouzsplit 13730 . . . . . . 7 (9 ∈ (ℤ‘2) → (ℤ‘2) = ((2..^9) ∪ (ℤ‘9)))
1110eleq2d 2824 . . . . . 6 (9 ∈ (ℤ‘2) → (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9))))
129, 11ax-mp 5 . . . . 5 (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9)))
13 elun 4162 . . . . 5 (𝑛 ∈ ((2..^9) ∪ (ℤ‘9)) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
1412, 13bitri 275 . . . 4 (𝑛 ∈ (ℤ‘2) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
15 elfzo2 13698 . . . . . . . 8 (𝑛 ∈ (2..^9) ↔ (𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9))
16 simp1 1135 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ∈ (ℤ‘2))
17 df-9 12333 . . . . . . . . . . . 12 9 = (8 + 1)
1817breq2i 5155 . . . . . . . . . . 11 (𝑛 < 9 ↔ 𝑛 < (8 + 1))
19 eluz2nn 12921 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
20 8nn 12358 . . . . . . . . . . . . . . 15 8 ∈ ℕ
2119, 20jctir 520 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘2) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
2221adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
23 nnleltp1 12670 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 8 ∈ ℕ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2422, 23syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2524biimprd 248 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < (8 + 1) → 𝑛 ≤ 8))
2618, 25biimtrid 242 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < 9 → 𝑛 ≤ 8))
27263impia 1116 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ≤ 8)
2816, 27jca 511 . . . . . . . 8 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
2915, 28sylbi 217 . . . . . . 7 (𝑛 ∈ (2..^9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
30 nnsum3primesle9 47718 . . . . . . 7 ((𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3129, 30syl 17 . . . . . 6 (𝑛 ∈ (2..^9) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3231a1d 25 . . . . 5 (𝑛 ∈ (2..^9) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
33 breq2 5151 . . . . . . . . . . 11 (𝑚 = 𝑛 → (4 < 𝑚 ↔ 4 < 𝑛))
34 eleq1w 2821 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 ∈ GoldbachEven ↔ 𝑛 ∈ GoldbachEven ))
3533, 34imbi12d 344 . . . . . . . . . 10 (𝑚 = 𝑛 → ((4 < 𝑚𝑚 ∈ GoldbachEven ) ↔ (4 < 𝑛𝑛 ∈ GoldbachEven )))
3635rspcv 3617 . . . . . . . . 9 (𝑛 ∈ Even → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → (4 < 𝑛𝑛 ∈ GoldbachEven )))
37 4re 12347 . . . . . . . . . . . . . . 15 4 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘9) → 4 ∈ ℝ)
395a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘9) → 9 ∈ ℝ)
40 eluzelre 12886 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ ℝ)
4138, 39, 403jca 1127 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ‘9) → (4 ∈ ℝ ∧ 9 ∈ ℝ ∧ 𝑛 ∈ ℝ))
4241adantl 481 . . . . . . . . . . . 12 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → (4 ∈ ℝ ∧ 9 ∈ ℝ ∧ 𝑛 ∈ ℝ))
43 eluzle 12888 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘9) → 9 ≤ 𝑛)
4443adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → 9 ≤ 𝑛)
45 4lt9 12466 . . . . . . . . . . . . 13 4 < 9
4644, 45jctil 519 . . . . . . . . . . . 12 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → (4 < 9 ∧ 9 ≤ 𝑛))
47 ltletr 11350 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 9 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((4 < 9 ∧ 9 ≤ 𝑛) → 4 < 𝑛))
4842, 46, 47sylc 65 . . . . . . . . . . 11 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → 4 < 𝑛)
49 pm2.27 42 . . . . . . . . . . 11 (4 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ))
5048, 49syl 17 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ))
5150ex 412 . . . . . . . . 9 (𝑛 ∈ Even → (𝑛 ∈ (ℤ‘9) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven )))
5236, 51syl5d 73 . . . . . . . 8 (𝑛 ∈ Even → (𝑛 ∈ (ℤ‘9) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven )))
5352impcom 407 . . . . . . 7 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ))
54 nnsum3primesgbe 47716 . . . . . . 7 (𝑛 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
5553, 54syl6 35 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
56 3nn 12342 . . . . . . . . . 10 3 ∈ ℕ
5756a1i 11 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW )) → 3 ∈ ℕ)
58 oveq2 7438 . . . . . . . . . . . 12 (𝑑 = 3 → (1...𝑑) = (1...3))
5958oveq2d 7446 . . . . . . . . . . 11 (𝑑 = 3 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m (1...3)))
60 breq1 5150 . . . . . . . . . . . 12 (𝑑 = 3 → (𝑑 ≤ 3 ↔ 3 ≤ 3))
6158sumeq1d 15732 . . . . . . . . . . . . 13 (𝑑 = 3 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ (1...3)(𝑓𝑘))
6261eqeq2d 2745 . . . . . . . . . . . 12 (𝑑 = 3 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
6360, 62anbi12d 632 . . . . . . . . . . 11 (𝑑 = 3 → ((𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6459, 63rexeqbidv 3344 . . . . . . . . . 10 (𝑑 = 3 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6564adantl 481 . . . . . . . . 9 ((((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW )) ∧ 𝑑 = 3) → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
66 3re 12343 . . . . . . . . . . . 12 3 ∈ ℝ
6766leidi 11794 . . . . . . . . . . 11 3 ≤ 3
6867a1i 11 . . . . . . . . . 10 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW )) → 3 ≤ 3)
69 6nn 12352 . . . . . . . . . . . . . 14 6 ∈ ℕ
7069nnzi 12638 . . . . . . . . . . . . 13 6 ∈ ℤ
71 6re 12353 . . . . . . . . . . . . . 14 6 ∈ ℝ
72 6lt9 12464 . . . . . . . . . . . . . 14 6 < 9
7371, 5, 72ltleii 11381 . . . . . . . . . . . . 13 6 ≤ 9
74 eluzuzle 12884 . . . . . . . . . . . . 13 ((6 ∈ ℤ ∧ 6 ≤ 9) → (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6)))
7570, 73, 74mp2an 692 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6))
7675anim1i 615 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ))
77 nnsum4primesodd 47720 . . . . . . . . . . 11 (∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW ) → ((𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7876, 77mpan9 506 . . . . . . . . . 10 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
79 r19.42v 3188 . . . . . . . . . 10 (∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)) ↔ (3 ≤ 3 ∧ ∃𝑓 ∈ (ℙ ↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
8068, 78, 79sylanbrc 583 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
8157, 65, 80rspcedvd 3623 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
8281expcom 413 . . . . . . 7 (∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW ) → ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
83 sbgoldbwt 47701 . . . . . . 7 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW ))
8482, 83syl11 33 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
85 eluzelz 12885 . . . . . . 7 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ ℤ)
86 zeoALTV 47594 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8785, 86syl 17 . . . . . 6 (𝑛 ∈ (ℤ‘9) → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8855, 84, 87mpjaodan 960 . . . . 5 (𝑛 ∈ (ℤ‘9) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8932, 88jaoi 857 . . . 4 ((𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
9014, 89sylbi 217 . . 3 (𝑛 ∈ (ℤ‘2) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
9190impcom 407 . 2 ((∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) ∧ 𝑛 ∈ (ℤ‘2)) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
9291ralrimiva 3143 1 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wral 3058  wrex 3067  cun 3960   class class class wbr 5147  cfv 6562  (class class class)co 7430  m cmap 8864  cr 11151  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cn 12263  2c2 12318  3c3 12319  4c4 12320  5c5 12321  6c6 12322  8c8 12324  9c9 12325  cz 12610  cuz 12875  ...cfz 13543  ..^cfzo 13690  Σcsu 15718  cprime 16704   Even ceven 47548   Odd codd 47549   GoldbachEven cgbe 47669   GoldbachOddW cgbow 47670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-dvds 16287  df-prm 16705  df-even 47550  df-odd 47551  df-gbe 47672  df-gbow 47673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator