Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbnnsum3prm Structured version   Visualization version   GIF version

Theorem bgoldbnnsum3prm 47798
Description: If the binary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 3 primes, showing that Schnirelmann's constant would be equal to 3. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
bgoldbnnsum3prm (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑘,𝑚,𝑑,𝑛

Proof of Theorem bgoldbnnsum3prm
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 2z 12541 . . . . . . 7 2 ∈ ℤ
2 9nn 12260 . . . . . . . 8 9 ∈ ℕ
32nnzi 12533 . . . . . . 7 9 ∈ ℤ
4 2re 12236 . . . . . . . 8 2 ∈ ℝ
5 9re 12261 . . . . . . . 8 9 ∈ ℝ
6 2lt9 12362 . . . . . . . 8 2 < 9
74, 5, 6ltleii 11273 . . . . . . 7 2 ≤ 9
8 eluz2 12775 . . . . . . 7 (9 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9))
91, 3, 7, 8mpbir3an 1342 . . . . . 6 9 ∈ (ℤ‘2)
10 fzouzsplit 13631 . . . . . . 7 (9 ∈ (ℤ‘2) → (ℤ‘2) = ((2..^9) ∪ (ℤ‘9)))
1110eleq2d 2814 . . . . . 6 (9 ∈ (ℤ‘2) → (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9))))
129, 11ax-mp 5 . . . . 5 (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9)))
13 elun 4112 . . . . 5 (𝑛 ∈ ((2..^9) ∪ (ℤ‘9)) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
1412, 13bitri 275 . . . 4 (𝑛 ∈ (ℤ‘2) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
15 elfzo2 13599 . . . . . . . 8 (𝑛 ∈ (2..^9) ↔ (𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9))
16 simp1 1136 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ∈ (ℤ‘2))
17 df-9 12232 . . . . . . . . . . . 12 9 = (8 + 1)
1817breq2i 5110 . . . . . . . . . . 11 (𝑛 < 9 ↔ 𝑛 < (8 + 1))
19 eluz2nn 12823 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
20 8nn 12257 . . . . . . . . . . . . . . 15 8 ∈ ℕ
2119, 20jctir 520 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘2) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
2221adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
23 nnleltp1 12565 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 8 ∈ ℕ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2422, 23syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2524biimprd 248 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < (8 + 1) → 𝑛 ≤ 8))
2618, 25biimtrid 242 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < 9 → 𝑛 ≤ 8))
27263impia 1117 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ≤ 8)
2816, 27jca 511 . . . . . . . 8 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
2915, 28sylbi 217 . . . . . . 7 (𝑛 ∈ (2..^9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
30 nnsum3primesle9 47788 . . . . . . 7 ((𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3129, 30syl 17 . . . . . 6 (𝑛 ∈ (2..^9) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3231a1d 25 . . . . 5 (𝑛 ∈ (2..^9) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
33 breq2 5106 . . . . . . . . . . 11 (𝑚 = 𝑛 → (4 < 𝑚 ↔ 4 < 𝑛))
34 eleq1w 2811 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 ∈ GoldbachEven ↔ 𝑛 ∈ GoldbachEven ))
3533, 34imbi12d 344 . . . . . . . . . 10 (𝑚 = 𝑛 → ((4 < 𝑚𝑚 ∈ GoldbachEven ) ↔ (4 < 𝑛𝑛 ∈ GoldbachEven )))
3635rspcv 3581 . . . . . . . . 9 (𝑛 ∈ Even → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → (4 < 𝑛𝑛 ∈ GoldbachEven )))
37 4re 12246 . . . . . . . . . . . . . . 15 4 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘9) → 4 ∈ ℝ)
395a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘9) → 9 ∈ ℝ)
40 eluzelre 12780 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ ℝ)
4138, 39, 403jca 1128 . . . . . . . . . . . . 13 (𝑛 ∈ (ℤ‘9) → (4 ∈ ℝ ∧ 9 ∈ ℝ ∧ 𝑛 ∈ ℝ))
4241adantl 481 . . . . . . . . . . . 12 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → (4 ∈ ℝ ∧ 9 ∈ ℝ ∧ 𝑛 ∈ ℝ))
43 eluzle 12782 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘9) → 9 ≤ 𝑛)
4443adantl 481 . . . . . . . . . . . . 13 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → 9 ≤ 𝑛)
45 4lt9 12360 . . . . . . . . . . . . 13 4 < 9
4644, 45jctil 519 . . . . . . . . . . . 12 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → (4 < 9 ∧ 9 ≤ 𝑛))
47 ltletr 11242 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 9 ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((4 < 9 ∧ 9 ≤ 𝑛) → 4 < 𝑛))
4842, 46, 47sylc 65 . . . . . . . . . . 11 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → 4 < 𝑛)
49 pm2.27 42 . . . . . . . . . . 11 (4 < 𝑛 → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ))
5048, 49syl 17 . . . . . . . . . 10 ((𝑛 ∈ Even ∧ 𝑛 ∈ (ℤ‘9)) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ))
5150ex 412 . . . . . . . . 9 (𝑛 ∈ Even → (𝑛 ∈ (ℤ‘9) → ((4 < 𝑛𝑛 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven )))
5236, 51syl5d 73 . . . . . . . 8 (𝑛 ∈ Even → (𝑛 ∈ (ℤ‘9) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven )))
5352impcom 407 . . . . . . 7 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → 𝑛 ∈ GoldbachEven ))
54 nnsum3primesgbe 47786 . . . . . . 7 (𝑛 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
5553, 54syl6 35 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
56 3nn 12241 . . . . . . . . . 10 3 ∈ ℕ
5756a1i 11 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW )) → 3 ∈ ℕ)
58 oveq2 7377 . . . . . . . . . . . 12 (𝑑 = 3 → (1...𝑑) = (1...3))
5958oveq2d 7385 . . . . . . . . . . 11 (𝑑 = 3 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m (1...3)))
60 breq1 5105 . . . . . . . . . . . 12 (𝑑 = 3 → (𝑑 ≤ 3 ↔ 3 ≤ 3))
6158sumeq1d 15642 . . . . . . . . . . . . 13 (𝑑 = 3 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ (1...3)(𝑓𝑘))
6261eqeq2d 2740 . . . . . . . . . . . 12 (𝑑 = 3 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
6360, 62anbi12d 632 . . . . . . . . . . 11 (𝑑 = 3 → ((𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6459, 63rexeqbidv 3317 . . . . . . . . . 10 (𝑑 = 3 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6564adantl 481 . . . . . . . . 9 ((((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW )) ∧ 𝑑 = 3) → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
66 3re 12242 . . . . . . . . . . . 12 3 ∈ ℝ
6766leidi 11688 . . . . . . . . . . 11 3 ≤ 3
6867a1i 11 . . . . . . . . . 10 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW )) → 3 ≤ 3)
69 6nn 12251 . . . . . . . . . . . . . 14 6 ∈ ℕ
7069nnzi 12533 . . . . . . . . . . . . 13 6 ∈ ℤ
71 6re 12252 . . . . . . . . . . . . . 14 6 ∈ ℝ
72 6lt9 12358 . . . . . . . . . . . . . 14 6 < 9
7371, 5, 72ltleii 11273 . . . . . . . . . . . . 13 6 ≤ 9
74 eluzuzle 12778 . . . . . . . . . . . . 13 ((6 ∈ ℤ ∧ 6 ≤ 9) → (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6)))
7570, 73, 74mp2an 692 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6))
7675anim1i 615 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ))
77 nnsum4primesodd 47790 . . . . . . . . . . 11 (∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW ) → ((𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7876, 77mpan9 506 . . . . . . . . . 10 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
79 r19.42v 3167 . . . . . . . . . 10 (∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)) ↔ (3 ≤ 3 ∧ ∃𝑓 ∈ (ℙ ↑m (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
8068, 78, 79sylanbrc 583 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑m (1...3))(3 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
8157, 65, 80rspcedvd 3587 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
8281expcom 413 . . . . . . 7 (∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW ) → ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
83 sbgoldbwt 47771 . . . . . . 7 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑜 ∈ Odd (5 < 𝑜𝑜 ∈ GoldbachOddW ))
8482, 83syl11 33 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
85 eluzelz 12779 . . . . . . 7 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ ℤ)
86 zeoALTV 47664 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8785, 86syl 17 . . . . . 6 (𝑛 ∈ (ℤ‘9) → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8855, 84, 87mpjaodan 960 . . . . 5 (𝑛 ∈ (ℤ‘9) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8932, 88jaoi 857 . . . 4 ((𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
9014, 89sylbi 217 . . 3 (𝑛 ∈ (ℤ‘2) → (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
9190impcom 407 . 2 ((∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) ∧ 𝑛 ∈ (ℤ‘2)) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
9291ralrimiva 3125 1 (∀𝑚 ∈ Even (4 < 𝑚𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cun 3909   class class class wbr 5102  cfv 6499  (class class class)co 7369  m cmap 8776  cr 11043  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cn 12162  2c2 12217  3c3 12218  4c4 12219  5c5 12220  6c6 12221  8c8 12223  9c9 12224  cz 12505  cuz 12769  ...cfz 13444  ..^cfzo 13591  Σcsu 15628  cprime 16617   Even ceven 47618   Odd codd 47619   GoldbachEven cgbe 47739   GoldbachOddW cgbow 47740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-dvds 16199  df-prm 16618  df-even 47620  df-odd 47621  df-gbe 47742  df-gbow 47743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator