| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz2nn | Structured version Visualization version GIF version | ||
| Description: An integer greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.) |
| Ref | Expression |
|---|---|
| eluz2nn | ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 12631 | . . 3 ⊢ 1 ∈ ℤ | |
| 2 | 1le2 12458 | . . 3 ⊢ 1 ≤ 2 | |
| 3 | eluzuzle 12870 | . . 3 ⊢ ((1 ∈ ℤ ∧ 1 ≤ 2) → (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ (ℤ≥‘1))) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ (ℤ≥‘1)) |
| 5 | nnuz 12904 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 6 | 4, 5 | eleqtrrdi 2844 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) |
| Copyright terms: Public domain | W3C validator |