Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluz2nn | Structured version Visualization version GIF version |
Description: An integer greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.) |
Ref | Expression |
---|---|
eluz2nn | ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12378 | . . 3 ⊢ 1 ∈ ℤ | |
2 | 1le2 12210 | . . 3 ⊢ 1 ≤ 2 | |
3 | eluzuzle 12619 | . . 3 ⊢ ((1 ∈ ℤ ∧ 1 ≤ 2) → (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ (ℤ≥‘1))) | |
4 | 1, 2, 3 | mp2an 688 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ (ℤ≥‘1)) |
5 | nnuz 12649 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
6 | 4, 5 | eleqtrrdi 2845 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) |
Copyright terms: Public domain | W3C validator |