Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluzge3nn | Structured version Visualization version GIF version |
Description: If an integer is greater than 3, then it is a positive integer. (Contributed by Alexander van der Vekens, 17-Sep-2018.) |
Ref | Expression |
---|---|
eluzge3nn | ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12460 | . . 3 ⊢ 1 ∈ ℤ | |
2 | 1le3 12295 | . . 3 ⊢ 1 ≤ 3 | |
3 | eluzuzle 12701 | . . 3 ⊢ ((1 ∈ ℤ ∧ 1 ≤ 3) → (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ (ℤ≥‘1))) | |
4 | 1, 2, 3 | mp2an 690 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ (ℤ≥‘1)) |
5 | elnnuz 12732 | . 2 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝑁 ∈ (ℤ≥‘3) → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5100 ‘cfv 6488 1c1 10982 ≤ cle 11120 ℕcn 12083 3c3 12139 ℤcz 12429 ℤ≥cuz 12692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-nn 12084 df-2 12146 df-3 12147 df-z 12430 df-uz 12693 |
This theorem is referenced by: uz3m2nn 12741 m1modge3gt1 13748 prmgaplem3 16856 axlowdimlem7 27671 axlowdimlem15 27679 axlowdimlem16 27680 axlowdimlem17 27681 clwwlknonex2 28827 2clwwlk2clwwlklem 29064 numclwlk1lem2 29088 dffltz 40784 fltltc 40811 fltnltalem 40812 fltnlta 40813 lighneallem4a 45478 bgoldbtbndlem2 45676 bgoldbtbndlem3 45677 bgoldbtbndlem4 45678 bgoldbtbnd 45679 |
Copyright terms: Public domain | W3C validator |