Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  enmappw Structured version   Visualization version   GIF version

Theorem enmappw 43974
Description: The set of all mappings from one set to the powerset of the other is equinumerous to the set of all mappings from the second set to the powerset of the first. (Contributed by RP, 27-Apr-2021.)
Assertion
Ref Expression
enmappw ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵m 𝐴) ≈ (𝒫 𝐴m 𝐵))

Proof of Theorem enmappw
StepHypRef Expression
1 enrelmap 43972 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵m 𝐴))
21ensymd 9027 . 2 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵m 𝐴) ≈ 𝒫 (𝐴 × 𝐵))
3 enrelmapr 43973 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴m 𝐵))
4 entr 9028 . 2 (((𝒫 𝐵m 𝐴) ≈ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴m 𝐵)) → (𝒫 𝐵m 𝐴) ≈ (𝒫 𝐴m 𝐵))
52, 3, 4syl2anc 584 1 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵m 𝐴) ≈ (𝒫 𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  𝒫 cpw 4580   class class class wbr 5123   × cxp 5663  (class class class)co 7413  m cmap 8848  cen 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968
This theorem is referenced by:  enmappwid  43975
  Copyright terms: Public domain W3C validator