Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  enmappw Structured version   Visualization version   GIF version

Theorem enmappw 43988
Description: The set of all mappings from one set to the powerset of the other is equinumerous to the set of all mappings from the second set to the powerset of the first. (Contributed by RP, 27-Apr-2021.)
Assertion
Ref Expression
enmappw ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵m 𝐴) ≈ (𝒫 𝐴m 𝐵))

Proof of Theorem enmappw
StepHypRef Expression
1 enrelmap 43986 . . 3 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵m 𝐴))
21ensymd 9043 . 2 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵m 𝐴) ≈ 𝒫 (𝐴 × 𝐵))
3 enrelmapr 43987 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴m 𝐵))
4 entr 9044 . 2 (((𝒫 𝐵m 𝐴) ≈ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴m 𝐵)) → (𝒫 𝐵m 𝐴) ≈ (𝒫 𝐴m 𝐵))
52, 3, 4syl2anc 584 1 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐵m 𝐴) ≈ (𝒫 𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  𝒫 cpw 4604   class class class wbr 5147   × cxp 5686  (class class class)co 7430  m cmap 8864  cen 8980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-en 8984
This theorem is referenced by:  enmappwid  43989
  Copyright terms: Public domain W3C validator