![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > enmappw | Structured version Visualization version GIF version |
Description: The set of all mappings from one set to the powerset of the other is equinumerous to the set of all mappings from the second set to the powerset of the first. (Contributed by RP, 27-Apr-2021.) |
Ref | Expression |
---|---|
enmappw | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑𝑚 𝐴) ≈ (𝒫 𝐴 ↑𝑚 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrelmap 39073 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐵 ↑𝑚 𝐴)) | |
2 | 1 | ensymd 8246 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑𝑚 𝐴) ≈ 𝒫 (𝐴 × 𝐵)) |
3 | enrelmapr 39074 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴 ↑𝑚 𝐵)) | |
4 | entr 8247 | . 2 ⊢ (((𝒫 𝐵 ↑𝑚 𝐴) ≈ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴 ↑𝑚 𝐵)) → (𝒫 𝐵 ↑𝑚 𝐴) ≈ (𝒫 𝐴 ↑𝑚 𝐵)) | |
5 | 2, 3, 4 | syl2anc 580 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐵 ↑𝑚 𝐴) ≈ (𝒫 𝐴 ↑𝑚 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 𝒫 cpw 4349 class class class wbr 4843 × cxp 5310 (class class class)co 6878 ↑𝑚 cmap 8095 ≈ cen 8192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-1o 7799 df-2o 7800 df-er 7982 df-map 8097 df-en 8196 |
This theorem is referenced by: enmappwid 39076 |
Copyright terms: Public domain | W3C validator |