| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aleph1irr | Structured version Visualization version GIF version | ||
| Description: There are at least aleph-one irrationals. (Contributed by NM, 2-Feb-2005.) |
| Ref | Expression |
|---|---|
| aleph1irr | ⊢ (ℵ‘1o) ≼ (ℝ ∖ ℚ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleph1re 16264 | . 2 ⊢ (ℵ‘1o) ≼ ℝ | |
| 2 | reex 11229 | . . . . 5 ⊢ ℝ ∈ V | |
| 3 | numth3 10493 | . . . . 5 ⊢ (ℝ ∈ V → ℝ ∈ dom card) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℝ ∈ dom card |
| 5 | nnenom 14004 | . . . . . . 7 ⊢ ℕ ≈ ω | |
| 6 | 5 | ensymi 9027 | . . . . . 6 ⊢ ω ≈ ℕ |
| 7 | ruc 16262 | . . . . . 6 ⊢ ℕ ≺ ℝ | |
| 8 | ensdomtr 9136 | . . . . . 6 ⊢ ((ω ≈ ℕ ∧ ℕ ≺ ℝ) → ω ≺ ℝ) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . . 5 ⊢ ω ≺ ℝ |
| 10 | sdomdom 9003 | . . . . 5 ⊢ (ω ≺ ℝ → ω ≼ ℝ) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ω ≼ ℝ |
| 12 | resdomq 16263 | . . . 4 ⊢ ℚ ≺ ℝ | |
| 13 | infdif 10231 | . . . 4 ⊢ ((ℝ ∈ dom card ∧ ω ≼ ℝ ∧ ℚ ≺ ℝ) → (ℝ ∖ ℚ) ≈ ℝ) | |
| 14 | 4, 11, 12, 13 | mp3an 1462 | . . 3 ⊢ (ℝ ∖ ℚ) ≈ ℝ |
| 15 | 14 | ensymi 9027 | . 2 ⊢ ℝ ≈ (ℝ ∖ ℚ) |
| 16 | domentr 9036 | . 2 ⊢ (((ℵ‘1o) ≼ ℝ ∧ ℝ ≈ (ℝ ∖ ℚ)) → (ℵ‘1o) ≼ (ℝ ∖ ℚ)) | |
| 17 | 1, 15, 16 | mp2an 692 | 1 ⊢ (ℵ‘1o) ≼ (ℝ ∖ ℚ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3464 ∖ cdif 3930 class class class wbr 5125 dom cdm 5667 ‘cfv 6542 ωcom 7870 1oc1o 8482 ≈ cen 8965 ≼ cdom 8966 ≺ csdm 8967 cardccrd 9958 ℵcale 9959 ℝcr 11137 ℕcn 12249 ℚcq 12973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-ac2 10486 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-oadd 8493 df-omul 8494 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9465 df-oi 9533 df-har 9580 df-dju 9924 df-card 9962 df-aleph 9963 df-acn 9965 df-ac 10139 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-q 12974 df-fz 13531 df-seq 14026 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |