| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aleph1irr | Structured version Visualization version GIF version | ||
| Description: There are at least aleph-one irrationals. (Contributed by NM, 2-Feb-2005.) |
| Ref | Expression |
|---|---|
| aleph1irr | ⊢ (ℵ‘1o) ≼ (ℝ ∖ ℚ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleph1re 16189 | . 2 ⊢ (ℵ‘1o) ≼ ℝ | |
| 2 | reex 11135 | . . . . 5 ⊢ ℝ ∈ V | |
| 3 | numth3 10399 | . . . . 5 ⊢ (ℝ ∈ V → ℝ ∈ dom card) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℝ ∈ dom card |
| 5 | nnenom 13921 | . . . . . . 7 ⊢ ℕ ≈ ω | |
| 6 | 5 | ensymi 8952 | . . . . . 6 ⊢ ω ≈ ℕ |
| 7 | ruc 16187 | . . . . . 6 ⊢ ℕ ≺ ℝ | |
| 8 | ensdomtr 9054 | . . . . . 6 ⊢ ((ω ≈ ℕ ∧ ℕ ≺ ℝ) → ω ≺ ℝ) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . . 5 ⊢ ω ≺ ℝ |
| 10 | sdomdom 8928 | . . . . 5 ⊢ (ω ≺ ℝ → ω ≼ ℝ) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ω ≼ ℝ |
| 12 | resdomq 16188 | . . . 4 ⊢ ℚ ≺ ℝ | |
| 13 | infdif 10137 | . . . 4 ⊢ ((ℝ ∈ dom card ∧ ω ≼ ℝ ∧ ℚ ≺ ℝ) → (ℝ ∖ ℚ) ≈ ℝ) | |
| 14 | 4, 11, 12, 13 | mp3an 1463 | . . 3 ⊢ (ℝ ∖ ℚ) ≈ ℝ |
| 15 | 14 | ensymi 8952 | . 2 ⊢ ℝ ≈ (ℝ ∖ ℚ) |
| 16 | domentr 8961 | . 2 ⊢ (((ℵ‘1o) ≼ ℝ ∧ ℝ ≈ (ℝ ∖ ℚ)) → (ℵ‘1o) ≼ (ℝ ∖ ℚ)) | |
| 17 | 1, 15, 16 | mp2an 692 | 1 ⊢ (ℵ‘1o) ≼ (ℝ ∖ ℚ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 ωcom 7822 1oc1o 8404 ≈ cen 8892 ≼ cdom 8893 ≺ csdm 8894 cardccrd 9864 ℵcale 9865 ℝcr 11043 ℕcn 12162 ℚcq 12883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-har 9486 df-dju 9830 df-card 9868 df-aleph 9869 df-acn 9871 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-fz 13445 df-seq 13943 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |