Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aleph1irr | Structured version Visualization version GIF version |
Description: There are at least aleph-one irrationals. (Contributed by NM, 2-Feb-2005.) |
Ref | Expression |
---|---|
aleph1irr | ⊢ (ℵ‘1o) ≼ (ℝ ∖ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleph1re 15965 | . 2 ⊢ (ℵ‘1o) ≼ ℝ | |
2 | reex 10973 | . . . . 5 ⊢ ℝ ∈ V | |
3 | numth3 10237 | . . . . 5 ⊢ (ℝ ∈ V → ℝ ∈ dom card) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℝ ∈ dom card |
5 | nnenom 13711 | . . . . . . 7 ⊢ ℕ ≈ ω | |
6 | 5 | ensymi 8782 | . . . . . 6 ⊢ ω ≈ ℕ |
7 | ruc 15963 | . . . . . 6 ⊢ ℕ ≺ ℝ | |
8 | ensdomtr 8891 | . . . . . 6 ⊢ ((ω ≈ ℕ ∧ ℕ ≺ ℝ) → ω ≺ ℝ) | |
9 | 6, 7, 8 | mp2an 689 | . . . . 5 ⊢ ω ≺ ℝ |
10 | sdomdom 8760 | . . . . 5 ⊢ (ω ≺ ℝ → ω ≼ ℝ) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ω ≼ ℝ |
12 | resdomq 15964 | . . . 4 ⊢ ℚ ≺ ℝ | |
13 | infdif 9976 | . . . 4 ⊢ ((ℝ ∈ dom card ∧ ω ≼ ℝ ∧ ℚ ≺ ℝ) → (ℝ ∖ ℚ) ≈ ℝ) | |
14 | 4, 11, 12, 13 | mp3an 1460 | . . 3 ⊢ (ℝ ∖ ℚ) ≈ ℝ |
15 | 14 | ensymi 8782 | . 2 ⊢ ℝ ≈ (ℝ ∖ ℚ) |
16 | domentr 8791 | . 2 ⊢ (((ℵ‘1o) ≼ ℝ ∧ ℝ ≈ (ℝ ∖ ℚ)) → (ℵ‘1o) ≼ (ℝ ∖ ℚ)) | |
17 | 1, 15, 16 | mp2an 689 | 1 ⊢ (ℵ‘1o) ≼ (ℝ ∖ ℚ) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 Vcvv 3431 ∖ cdif 3889 class class class wbr 5079 dom cdm 5590 ‘cfv 6432 ωcom 7707 1oc1o 8282 ≈ cen 8722 ≼ cdom 8723 ≺ csdm 8724 cardccrd 9704 ℵcale 9705 ℝcr 10881 ℕcn 11984 ℚcq 12699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-inf2 9387 ax-ac2 10230 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 ax-pre-sup 10960 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-2o 8290 df-oadd 8293 df-omul 8294 df-er 8490 df-map 8609 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-sup 9189 df-oi 9257 df-har 9304 df-dju 9670 df-card 9708 df-aleph 9709 df-acn 9711 df-ac 9883 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-div 11644 df-nn 11985 df-2 12047 df-n0 12245 df-z 12331 df-uz 12594 df-q 12700 df-fz 13251 df-seq 13733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |