MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleph1irr Structured version   Visualization version   GIF version

Theorem aleph1irr 16285
Description: There are at least aleph-one irrationals. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
aleph1irr (ℵ‘1o) ≼ (ℝ ∖ ℚ)

Proof of Theorem aleph1irr
StepHypRef Expression
1 aleph1re 16284 . 2 (ℵ‘1o) ≼ ℝ
2 reex 11250 . . . . 5 ℝ ∈ V
3 numth3 10514 . . . . 5 (ℝ ∈ V → ℝ ∈ dom card)
42, 3ax-mp 5 . . . 4 ℝ ∈ dom card
5 nnenom 14024 . . . . . . 7 ℕ ≈ ω
65ensymi 9049 . . . . . 6 ω ≈ ℕ
7 ruc 16282 . . . . . 6 ℕ ≺ ℝ
8 ensdomtr 9158 . . . . . 6 ((ω ≈ ℕ ∧ ℕ ≺ ℝ) → ω ≺ ℝ)
96, 7, 8mp2an 692 . . . . 5 ω ≺ ℝ
10 sdomdom 9025 . . . . 5 (ω ≺ ℝ → ω ≼ ℝ)
119, 10ax-mp 5 . . . 4 ω ≼ ℝ
12 resdomq 16283 . . . 4 ℚ ≺ ℝ
13 infdif 10252 . . . 4 ((ℝ ∈ dom card ∧ ω ≼ ℝ ∧ ℚ ≺ ℝ) → (ℝ ∖ ℚ) ≈ ℝ)
144, 11, 12, 13mp3an 1461 . . 3 (ℝ ∖ ℚ) ≈ ℝ
1514ensymi 9049 . 2 ℝ ≈ (ℝ ∖ ℚ)
16 domentr 9058 . 2 (((ℵ‘1o) ≼ ℝ ∧ ℝ ≈ (ℝ ∖ ℚ)) → (ℵ‘1o) ≼ (ℝ ∖ ℚ))
171, 15, 16mp2an 692 1 (ℵ‘1o) ≼ (ℝ ∖ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3479  cdif 3961   class class class wbr 5149  dom cdm 5690  cfv 6566  ωcom 7891  1oc1o 8504  cen 8987  cdom 8988  csdm 8989  cardccrd 9979  cale 9980  cr 11158  cn 12270  cq 12994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-inf2 9685  ax-ac2 10507  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-se 5643  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-isom 6575  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-2o 8512  df-oadd 8515  df-omul 8516  df-er 8750  df-map 8873  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-sup 9486  df-oi 9554  df-har 9601  df-dju 9945  df-card 9983  df-aleph 9984  df-acn 9986  df-ac 10160  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-n0 12531  df-z 12618  df-uz 12883  df-q 12995  df-fz 13551  df-seq 14046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator