| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aleph1irr | Structured version Visualization version GIF version | ||
| Description: There are at least aleph-one irrationals. (Contributed by NM, 2-Feb-2005.) |
| Ref | Expression |
|---|---|
| aleph1irr | ⊢ (ℵ‘1o) ≼ (ℝ ∖ ℚ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleph1re 16219 | . 2 ⊢ (ℵ‘1o) ≼ ℝ | |
| 2 | reex 11165 | . . . . 5 ⊢ ℝ ∈ V | |
| 3 | numth3 10429 | . . . . 5 ⊢ (ℝ ∈ V → ℝ ∈ dom card) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ℝ ∈ dom card |
| 5 | nnenom 13951 | . . . . . . 7 ⊢ ℕ ≈ ω | |
| 6 | 5 | ensymi 8977 | . . . . . 6 ⊢ ω ≈ ℕ |
| 7 | ruc 16217 | . . . . . 6 ⊢ ℕ ≺ ℝ | |
| 8 | ensdomtr 9082 | . . . . . 6 ⊢ ((ω ≈ ℕ ∧ ℕ ≺ ℝ) → ω ≺ ℝ) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . . 5 ⊢ ω ≺ ℝ |
| 10 | sdomdom 8953 | . . . . 5 ⊢ (ω ≺ ℝ → ω ≼ ℝ) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ ω ≼ ℝ |
| 12 | resdomq 16218 | . . . 4 ⊢ ℚ ≺ ℝ | |
| 13 | infdif 10167 | . . . 4 ⊢ ((ℝ ∈ dom card ∧ ω ≼ ℝ ∧ ℚ ≺ ℝ) → (ℝ ∖ ℚ) ≈ ℝ) | |
| 14 | 4, 11, 12, 13 | mp3an 1463 | . . 3 ⊢ (ℝ ∖ ℚ) ≈ ℝ |
| 15 | 14 | ensymi 8977 | . 2 ⊢ ℝ ≈ (ℝ ∖ ℚ) |
| 16 | domentr 8986 | . 2 ⊢ (((ℵ‘1o) ≼ ℝ ∧ ℝ ≈ (ℝ ∖ ℚ)) → (ℵ‘1o) ≼ (ℝ ∖ ℚ)) | |
| 17 | 1, 15, 16 | mp2an 692 | 1 ⊢ (ℵ‘1o) ≼ (ℝ ∖ ℚ) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∖ cdif 3913 class class class wbr 5109 dom cdm 5640 ‘cfv 6513 ωcom 7844 1oc1o 8429 ≈ cen 8917 ≼ cdom 8918 ≺ csdm 8919 cardccrd 9894 ℵcale 9895 ℝcr 11073 ℕcn 12187 ℚcq 12913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-ac2 10422 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-omul 8441 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-oi 9469 df-har 9516 df-dju 9860 df-card 9898 df-aleph 9899 df-acn 9901 df-ac 10075 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-fz 13475 df-seq 13973 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |