MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aleph1irr Structured version   Visualization version   GIF version

Theorem aleph1irr 16135
Description: There are at least aleph-one irrationals. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
aleph1irr (ℵ‘1o) ≼ (ℝ ∖ ℚ)

Proof of Theorem aleph1irr
StepHypRef Expression
1 aleph1re 16134 . 2 (ℵ‘1o) ≼ ℝ
2 reex 11149 . . . . 5 ℝ ∈ V
3 numth3 10413 . . . . 5 (ℝ ∈ V → ℝ ∈ dom card)
42, 3ax-mp 5 . . . 4 ℝ ∈ dom card
5 nnenom 13892 . . . . . . 7 ℕ ≈ ω
65ensymi 8951 . . . . . 6 ω ≈ ℕ
7 ruc 16132 . . . . . 6 ℕ ≺ ℝ
8 ensdomtr 9064 . . . . . 6 ((ω ≈ ℕ ∧ ℕ ≺ ℝ) → ω ≺ ℝ)
96, 7, 8mp2an 691 . . . . 5 ω ≺ ℝ
10 sdomdom 8927 . . . . 5 (ω ≺ ℝ → ω ≼ ℝ)
119, 10ax-mp 5 . . . 4 ω ≼ ℝ
12 resdomq 16133 . . . 4 ℚ ≺ ℝ
13 infdif 10152 . . . 4 ((ℝ ∈ dom card ∧ ω ≼ ℝ ∧ ℚ ≺ ℝ) → (ℝ ∖ ℚ) ≈ ℝ)
144, 11, 12, 13mp3an 1462 . . 3 (ℝ ∖ ℚ) ≈ ℝ
1514ensymi 8951 . 2 ℝ ≈ (ℝ ∖ ℚ)
16 domentr 8960 . 2 (((ℵ‘1o) ≼ ℝ ∧ ℝ ≈ (ℝ ∖ ℚ)) → (ℵ‘1o) ≼ (ℝ ∖ ℚ))
171, 15, 16mp2an 691 1 (ℵ‘1o) ≼ (ℝ ∖ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3448  cdif 3912   class class class wbr 5110  dom cdm 5638  cfv 6501  ωcom 7807  1oc1o 8410  cen 8887  cdom 8888  csdm 8889  cardccrd 9878  cale 9879  cr 11057  cn 12160  cq 12880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-ac2 10406  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-omul 8422  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-oi 9453  df-har 9500  df-dju 9844  df-card 9882  df-aleph 9883  df-acn 9885  df-ac 10059  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-q 12881  df-fz 13432  df-seq 13914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator