MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephnbtwn2 Structured version   Visualization version   GIF version

Theorem alephnbtwn2 9826
Description: No set has equinumerosity between an aleph and its successor aleph. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephnbtwn2 ¬ ((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴))

Proof of Theorem alephnbtwn2
StepHypRef Expression
1 cardidm 9715 . . 3 (card‘(card‘𝐵)) = (card‘𝐵)
2 alephnbtwn 9825 . . 3 ((card‘(card‘𝐵)) = (card‘𝐵) → ¬ ((ℵ‘𝐴) ∈ (card‘𝐵) ∧ (card‘𝐵) ∈ (ℵ‘suc 𝐴)))
31, 2ax-mp 5 . 2 ¬ ((ℵ‘𝐴) ∈ (card‘𝐵) ∧ (card‘𝐵) ∈ (ℵ‘suc 𝐴))
4 alephon 9823 . . . . . . . 8 (ℵ‘suc 𝐴) ∈ On
5 sdomdom 8766 . . . . . . . 8 (𝐵 ≺ (ℵ‘suc 𝐴) → 𝐵 ≼ (ℵ‘suc 𝐴))
6 ondomen 9791 . . . . . . . 8 (((ℵ‘suc 𝐴) ∈ On ∧ 𝐵 ≼ (ℵ‘suc 𝐴)) → 𝐵 ∈ dom card)
74, 5, 6sylancr 587 . . . . . . 7 (𝐵 ≺ (ℵ‘suc 𝐴) → 𝐵 ∈ dom card)
8 cardid2 9709 . . . . . . 7 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
97, 8syl 17 . . . . . 6 (𝐵 ≺ (ℵ‘suc 𝐴) → (card‘𝐵) ≈ 𝐵)
109ensymd 8789 . . . . 5 (𝐵 ≺ (ℵ‘suc 𝐴) → 𝐵 ≈ (card‘𝐵))
11 sdomentr 8896 . . . . 5 (((ℵ‘𝐴) ≺ 𝐵𝐵 ≈ (card‘𝐵)) → (ℵ‘𝐴) ≺ (card‘𝐵))
1210, 11sylan2 593 . . . 4 (((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴)) → (ℵ‘𝐴) ≺ (card‘𝐵))
13 alephon 9823 . . . . . 6 (ℵ‘𝐴) ∈ On
14 cardon 9700 . . . . . . 7 (card‘𝐵) ∈ On
15 onenon 9705 . . . . . . 7 ((card‘𝐵) ∈ On → (card‘𝐵) ∈ dom card)
1614, 15ax-mp 5 . . . . . 6 (card‘𝐵) ∈ dom card
17 cardsdomel 9730 . . . . . 6 (((ℵ‘𝐴) ∈ On ∧ (card‘𝐵) ∈ dom card) → ((ℵ‘𝐴) ≺ (card‘𝐵) ↔ (ℵ‘𝐴) ∈ (card‘(card‘𝐵))))
1813, 16, 17mp2an 689 . . . . 5 ((ℵ‘𝐴) ≺ (card‘𝐵) ↔ (ℵ‘𝐴) ∈ (card‘(card‘𝐵)))
191eleq2i 2830 . . . . 5 ((ℵ‘𝐴) ∈ (card‘(card‘𝐵)) ↔ (ℵ‘𝐴) ∈ (card‘𝐵))
2018, 19bitri 274 . . . 4 ((ℵ‘𝐴) ≺ (card‘𝐵) ↔ (ℵ‘𝐴) ∈ (card‘𝐵))
2112, 20sylib 217 . . 3 (((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴)) → (ℵ‘𝐴) ∈ (card‘𝐵))
22 ensdomtr 8898 . . . . . 6 (((card‘𝐵) ≈ 𝐵𝐵 ≺ (ℵ‘suc 𝐴)) → (card‘𝐵) ≺ (ℵ‘suc 𝐴))
239, 22mpancom 685 . . . . 5 (𝐵 ≺ (ℵ‘suc 𝐴) → (card‘𝐵) ≺ (ℵ‘suc 𝐴))
2423adantl 482 . . . 4 (((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴)) → (card‘𝐵) ≺ (ℵ‘suc 𝐴))
25 onenon 9705 . . . . . . 7 ((ℵ‘suc 𝐴) ∈ On → (ℵ‘suc 𝐴) ∈ dom card)
264, 25ax-mp 5 . . . . . 6 (ℵ‘suc 𝐴) ∈ dom card
27 cardsdomel 9730 . . . . . 6 (((card‘𝐵) ∈ On ∧ (ℵ‘suc 𝐴) ∈ dom card) → ((card‘𝐵) ≺ (ℵ‘suc 𝐴) ↔ (card‘𝐵) ∈ (card‘(ℵ‘suc 𝐴))))
2814, 26, 27mp2an 689 . . . . 5 ((card‘𝐵) ≺ (ℵ‘suc 𝐴) ↔ (card‘𝐵) ∈ (card‘(ℵ‘suc 𝐴)))
29 alephcard 9824 . . . . . 6 (card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)
3029eleq2i 2830 . . . . 5 ((card‘𝐵) ∈ (card‘(ℵ‘suc 𝐴)) ↔ (card‘𝐵) ∈ (ℵ‘suc 𝐴))
3128, 30bitri 274 . . . 4 ((card‘𝐵) ≺ (ℵ‘suc 𝐴) ↔ (card‘𝐵) ∈ (ℵ‘suc 𝐴))
3224, 31sylib 217 . . 3 (((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴)) → (card‘𝐵) ∈ (ℵ‘suc 𝐴))
3321, 32jca 512 . 2 (((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴)) → ((ℵ‘𝐴) ∈ (card‘𝐵) ∧ (card‘𝐵) ∈ (ℵ‘suc 𝐴)))
343, 33mto 196 1 ¬ ((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5076  dom cdm 5591  Oncon0 6268  suc csuc 6270  cfv 6435  cen 8728  cdom 8729  csdm 8730  cardccrd 9691  cale 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-inf2 9397
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-isom 6444  df-riota 7234  df-ov 7280  df-om 7713  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-oi 9267  df-har 9314  df-card 9695  df-aleph 9696
This theorem is referenced by:  alephsucdom  9833  alephsucpw2  9865  alephgch  10428  winalim2  10450  aleph1re  15952
  Copyright terms: Public domain W3C validator