MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephnbtwn2 Structured version   Visualization version   GIF version

Theorem alephnbtwn2 9828
Description: No set has equinumerosity between an aleph and its successor aleph. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephnbtwn2 ¬ ((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴))

Proof of Theorem alephnbtwn2
StepHypRef Expression
1 cardidm 9717 . . 3 (card‘(card‘𝐵)) = (card‘𝐵)
2 alephnbtwn 9827 . . 3 ((card‘(card‘𝐵)) = (card‘𝐵) → ¬ ((ℵ‘𝐴) ∈ (card‘𝐵) ∧ (card‘𝐵) ∈ (ℵ‘suc 𝐴)))
31, 2ax-mp 5 . 2 ¬ ((ℵ‘𝐴) ∈ (card‘𝐵) ∧ (card‘𝐵) ∈ (ℵ‘suc 𝐴))
4 alephon 9825 . . . . . . . 8 (ℵ‘suc 𝐴) ∈ On
5 sdomdom 8768 . . . . . . . 8 (𝐵 ≺ (ℵ‘suc 𝐴) → 𝐵 ≼ (ℵ‘suc 𝐴))
6 ondomen 9793 . . . . . . . 8 (((ℵ‘suc 𝐴) ∈ On ∧ 𝐵 ≼ (ℵ‘suc 𝐴)) → 𝐵 ∈ dom card)
74, 5, 6sylancr 587 . . . . . . 7 (𝐵 ≺ (ℵ‘suc 𝐴) → 𝐵 ∈ dom card)
8 cardid2 9711 . . . . . . 7 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
97, 8syl 17 . . . . . 6 (𝐵 ≺ (ℵ‘suc 𝐴) → (card‘𝐵) ≈ 𝐵)
109ensymd 8791 . . . . 5 (𝐵 ≺ (ℵ‘suc 𝐴) → 𝐵 ≈ (card‘𝐵))
11 sdomentr 8898 . . . . 5 (((ℵ‘𝐴) ≺ 𝐵𝐵 ≈ (card‘𝐵)) → (ℵ‘𝐴) ≺ (card‘𝐵))
1210, 11sylan2 593 . . . 4 (((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴)) → (ℵ‘𝐴) ≺ (card‘𝐵))
13 alephon 9825 . . . . . 6 (ℵ‘𝐴) ∈ On
14 cardon 9702 . . . . . . 7 (card‘𝐵) ∈ On
15 onenon 9707 . . . . . . 7 ((card‘𝐵) ∈ On → (card‘𝐵) ∈ dom card)
1614, 15ax-mp 5 . . . . . 6 (card‘𝐵) ∈ dom card
17 cardsdomel 9732 . . . . . 6 (((ℵ‘𝐴) ∈ On ∧ (card‘𝐵) ∈ dom card) → ((ℵ‘𝐴) ≺ (card‘𝐵) ↔ (ℵ‘𝐴) ∈ (card‘(card‘𝐵))))
1813, 16, 17mp2an 689 . . . . 5 ((ℵ‘𝐴) ≺ (card‘𝐵) ↔ (ℵ‘𝐴) ∈ (card‘(card‘𝐵)))
191eleq2i 2830 . . . . 5 ((ℵ‘𝐴) ∈ (card‘(card‘𝐵)) ↔ (ℵ‘𝐴) ∈ (card‘𝐵))
2018, 19bitri 274 . . . 4 ((ℵ‘𝐴) ≺ (card‘𝐵) ↔ (ℵ‘𝐴) ∈ (card‘𝐵))
2112, 20sylib 217 . . 3 (((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴)) → (ℵ‘𝐴) ∈ (card‘𝐵))
22 ensdomtr 8900 . . . . . 6 (((card‘𝐵) ≈ 𝐵𝐵 ≺ (ℵ‘suc 𝐴)) → (card‘𝐵) ≺ (ℵ‘suc 𝐴))
239, 22mpancom 685 . . . . 5 (𝐵 ≺ (ℵ‘suc 𝐴) → (card‘𝐵) ≺ (ℵ‘suc 𝐴))
2423adantl 482 . . . 4 (((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴)) → (card‘𝐵) ≺ (ℵ‘suc 𝐴))
25 onenon 9707 . . . . . . 7 ((ℵ‘suc 𝐴) ∈ On → (ℵ‘suc 𝐴) ∈ dom card)
264, 25ax-mp 5 . . . . . 6 (ℵ‘suc 𝐴) ∈ dom card
27 cardsdomel 9732 . . . . . 6 (((card‘𝐵) ∈ On ∧ (ℵ‘suc 𝐴) ∈ dom card) → ((card‘𝐵) ≺ (ℵ‘suc 𝐴) ↔ (card‘𝐵) ∈ (card‘(ℵ‘suc 𝐴))))
2814, 26, 27mp2an 689 . . . . 5 ((card‘𝐵) ≺ (ℵ‘suc 𝐴) ↔ (card‘𝐵) ∈ (card‘(ℵ‘suc 𝐴)))
29 alephcard 9826 . . . . . 6 (card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴)
3029eleq2i 2830 . . . . 5 ((card‘𝐵) ∈ (card‘(ℵ‘suc 𝐴)) ↔ (card‘𝐵) ∈ (ℵ‘suc 𝐴))
3128, 30bitri 274 . . . 4 ((card‘𝐵) ≺ (ℵ‘suc 𝐴) ↔ (card‘𝐵) ∈ (ℵ‘suc 𝐴))
3224, 31sylib 217 . . 3 (((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴)) → (card‘𝐵) ∈ (ℵ‘suc 𝐴))
3321, 32jca 512 . 2 (((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴)) → ((ℵ‘𝐴) ∈ (card‘𝐵) ∧ (card‘𝐵) ∈ (ℵ‘suc 𝐴)))
343, 33mto 196 1 ¬ ((ℵ‘𝐴) ≺ 𝐵𝐵 ≺ (ℵ‘suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  dom cdm 5589  Oncon0 6266  suc csuc 6268  cfv 6433  cen 8730  cdom 8731  csdm 8732  cardccrd 9693  cale 9694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-har 9316  df-card 9697  df-aleph 9698
This theorem is referenced by:  alephsucdom  9835  alephsucpw2  9867  alephgch  10430  winalim2  10452  aleph1re  15954
  Copyright terms: Public domain W3C validator