Proof of Theorem alephnbtwn2
Step | Hyp | Ref
| Expression |
1 | | cardidm 9717 |
. . 3
⊢
(card‘(card‘𝐵)) = (card‘𝐵) |
2 | | alephnbtwn 9827 |
. . 3
⊢
((card‘(card‘𝐵)) = (card‘𝐵) → ¬ ((ℵ‘𝐴) ∈ (card‘𝐵) ∧ (card‘𝐵) ∈ (ℵ‘suc
𝐴))) |
3 | 1, 2 | ax-mp 5 |
. 2
⊢ ¬
((ℵ‘𝐴) ∈
(card‘𝐵) ∧
(card‘𝐵) ∈
(ℵ‘suc 𝐴)) |
4 | | alephon 9825 |
. . . . . . . 8
⊢
(ℵ‘suc 𝐴) ∈ On |
5 | | sdomdom 8768 |
. . . . . . . 8
⊢ (𝐵 ≺ (ℵ‘suc
𝐴) → 𝐵 ≼ (ℵ‘suc 𝐴)) |
6 | | ondomen 9793 |
. . . . . . . 8
⊢
(((ℵ‘suc 𝐴) ∈ On ∧ 𝐵 ≼ (ℵ‘suc 𝐴)) → 𝐵 ∈ dom card) |
7 | 4, 5, 6 | sylancr 587 |
. . . . . . 7
⊢ (𝐵 ≺ (ℵ‘suc
𝐴) → 𝐵 ∈ dom card) |
8 | | cardid2 9711 |
. . . . . . 7
⊢ (𝐵 ∈ dom card →
(card‘𝐵) ≈
𝐵) |
9 | 7, 8 | syl 17 |
. . . . . 6
⊢ (𝐵 ≺ (ℵ‘suc
𝐴) → (card‘𝐵) ≈ 𝐵) |
10 | 9 | ensymd 8791 |
. . . . 5
⊢ (𝐵 ≺ (ℵ‘suc
𝐴) → 𝐵 ≈ (card‘𝐵)) |
11 | | sdomentr 8898 |
. . . . 5
⊢
(((ℵ‘𝐴)
≺ 𝐵 ∧ 𝐵 ≈ (card‘𝐵)) → (ℵ‘𝐴) ≺ (card‘𝐵)) |
12 | 10, 11 | sylan2 593 |
. . . 4
⊢
(((ℵ‘𝐴)
≺ 𝐵 ∧ 𝐵 ≺ (ℵ‘suc
𝐴)) →
(ℵ‘𝐴) ≺
(card‘𝐵)) |
13 | | alephon 9825 |
. . . . . 6
⊢
(ℵ‘𝐴)
∈ On |
14 | | cardon 9702 |
. . . . . . 7
⊢
(card‘𝐵)
∈ On |
15 | | onenon 9707 |
. . . . . . 7
⊢
((card‘𝐵)
∈ On → (card‘𝐵) ∈ dom card) |
16 | 14, 15 | ax-mp 5 |
. . . . . 6
⊢
(card‘𝐵)
∈ dom card |
17 | | cardsdomel 9732 |
. . . . . 6
⊢
(((ℵ‘𝐴)
∈ On ∧ (card‘𝐵) ∈ dom card) →
((ℵ‘𝐴) ≺
(card‘𝐵) ↔
(ℵ‘𝐴) ∈
(card‘(card‘𝐵)))) |
18 | 13, 16, 17 | mp2an 689 |
. . . . 5
⊢
((ℵ‘𝐴)
≺ (card‘𝐵)
↔ (ℵ‘𝐴)
∈ (card‘(card‘𝐵))) |
19 | 1 | eleq2i 2830 |
. . . . 5
⊢
((ℵ‘𝐴)
∈ (card‘(card‘𝐵)) ↔ (ℵ‘𝐴) ∈ (card‘𝐵)) |
20 | 18, 19 | bitri 274 |
. . . 4
⊢
((ℵ‘𝐴)
≺ (card‘𝐵)
↔ (ℵ‘𝐴)
∈ (card‘𝐵)) |
21 | 12, 20 | sylib 217 |
. . 3
⊢
(((ℵ‘𝐴)
≺ 𝐵 ∧ 𝐵 ≺ (ℵ‘suc
𝐴)) →
(ℵ‘𝐴) ∈
(card‘𝐵)) |
22 | | ensdomtr 8900 |
. . . . . 6
⊢
(((card‘𝐵)
≈ 𝐵 ∧ 𝐵 ≺ (ℵ‘suc
𝐴)) →
(card‘𝐵) ≺
(ℵ‘suc 𝐴)) |
23 | 9, 22 | mpancom 685 |
. . . . 5
⊢ (𝐵 ≺ (ℵ‘suc
𝐴) → (card‘𝐵) ≺ (ℵ‘suc
𝐴)) |
24 | 23 | adantl 482 |
. . . 4
⊢
(((ℵ‘𝐴)
≺ 𝐵 ∧ 𝐵 ≺ (ℵ‘suc
𝐴)) →
(card‘𝐵) ≺
(ℵ‘suc 𝐴)) |
25 | | onenon 9707 |
. . . . . . 7
⊢
((ℵ‘suc 𝐴) ∈ On → (ℵ‘suc 𝐴) ∈ dom
card) |
26 | 4, 25 | ax-mp 5 |
. . . . . 6
⊢
(ℵ‘suc 𝐴) ∈ dom card |
27 | | cardsdomel 9732 |
. . . . . 6
⊢
(((card‘𝐵)
∈ On ∧ (ℵ‘suc 𝐴) ∈ dom card) → ((card‘𝐵) ≺ (ℵ‘suc
𝐴) ↔ (card‘𝐵) ∈
(card‘(ℵ‘suc 𝐴)))) |
28 | 14, 26, 27 | mp2an 689 |
. . . . 5
⊢
((card‘𝐵)
≺ (ℵ‘suc 𝐴) ↔ (card‘𝐵) ∈ (card‘(ℵ‘suc
𝐴))) |
29 | | alephcard 9826 |
. . . . . 6
⊢
(card‘(ℵ‘suc 𝐴)) = (ℵ‘suc 𝐴) |
30 | 29 | eleq2i 2830 |
. . . . 5
⊢
((card‘𝐵)
∈ (card‘(ℵ‘suc 𝐴)) ↔ (card‘𝐵) ∈ (ℵ‘suc 𝐴)) |
31 | 28, 30 | bitri 274 |
. . . 4
⊢
((card‘𝐵)
≺ (ℵ‘suc 𝐴) ↔ (card‘𝐵) ∈ (ℵ‘suc 𝐴)) |
32 | 24, 31 | sylib 217 |
. . 3
⊢
(((ℵ‘𝐴)
≺ 𝐵 ∧ 𝐵 ≺ (ℵ‘suc
𝐴)) →
(card‘𝐵) ∈
(ℵ‘suc 𝐴)) |
33 | 21, 32 | jca 512 |
. 2
⊢
(((ℵ‘𝐴)
≺ 𝐵 ∧ 𝐵 ≺ (ℵ‘suc
𝐴)) →
((ℵ‘𝐴) ∈
(card‘𝐵) ∧
(card‘𝐵) ∈
(ℵ‘suc 𝐴))) |
34 | 3, 33 | mto 196 |
1
⊢ ¬
((ℵ‘𝐴) ≺
𝐵 ∧ 𝐵 ≺ (ℵ‘suc 𝐴)) |