Proof of Theorem infunsdom1
| Step | Hyp | Ref
| Expression |
| 1 | | simprl 771 |
. . . . 5
⊢ (((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) → 𝐴 ≼ 𝐵) |
| 2 | | domsdomtr 9152 |
. . . . 5
⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ ω) → 𝐴 ≺ ω) |
| 3 | 1, 2 | sylan 580 |
. . . 4
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐵 ≺ ω) → 𝐴 ≺ ω) |
| 4 | | unfi2 9348 |
. . . 4
⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) |
| 5 | 3, 4 | sylancom 588 |
. . 3
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) |
| 6 | | simpllr 776 |
. . 3
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐵 ≺ ω) → ω ≼
𝑋) |
| 7 | | sdomdomtr 9150 |
. . 3
⊢ (((𝐴 ∪ 𝐵) ≺ ω ∧ ω ≼
𝑋) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| 8 | 5, 6, 7 | syl2anc 584 |
. 2
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| 9 | | omelon 9686 |
. . . . . 6
⊢ ω
∈ On |
| 10 | | onenon 9989 |
. . . . . 6
⊢ (ω
∈ On → ω ∈ dom card) |
| 11 | 9, 10 | ax-mp 5 |
. . . . 5
⊢ ω
∈ dom card |
| 12 | | simpll 767 |
. . . . . 6
⊢ (((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) → 𝑋 ∈ dom card) |
| 13 | | sdomdom 9020 |
. . . . . . 7
⊢ (𝐵 ≺ 𝑋 → 𝐵 ≼ 𝑋) |
| 14 | 13 | ad2antll 729 |
. . . . . 6
⊢ (((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) → 𝐵 ≼ 𝑋) |
| 15 | | numdom 10078 |
. . . . . 6
⊢ ((𝑋 ∈ dom card ∧ 𝐵 ≼ 𝑋) → 𝐵 ∈ dom card) |
| 16 | 12, 14, 15 | syl2anc 584 |
. . . . 5
⊢ (((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) → 𝐵 ∈ dom card) |
| 17 | | domtri2 10029 |
. . . . 5
⊢ ((ω
∈ dom card ∧ 𝐵
∈ dom card) → (ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω)) |
| 18 | 11, 16, 17 | sylancr 587 |
. . . 4
⊢ (((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) → (ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω)) |
| 19 | 18 | biimpar 477 |
. . 3
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ ¬ 𝐵 ≺ ω) → ω ≼
𝐵) |
| 20 | | uncom 4158 |
. . . . 5
⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) |
| 21 | 16 | adantr 480 |
. . . . . 6
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ ω ≼ 𝐵) → 𝐵 ∈ dom card) |
| 22 | | simpr 484 |
. . . . . 6
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ ω ≼ 𝐵) → ω ≼ 𝐵) |
| 23 | 1 | adantr 480 |
. . . . . 6
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ ω ≼ 𝐵) → 𝐴 ≼ 𝐵) |
| 24 | | infunabs 10246 |
. . . . . 6
⊢ ((𝐵 ∈ dom card ∧ ω
≼ 𝐵 ∧ 𝐴 ≼ 𝐵) → (𝐵 ∪ 𝐴) ≈ 𝐵) |
| 25 | 21, 22, 23, 24 | syl3anc 1373 |
. . . . 5
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ ω ≼ 𝐵) → (𝐵 ∪ 𝐴) ≈ 𝐵) |
| 26 | 20, 25 | eqbrtrid 5178 |
. . . 4
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ ω ≼ 𝐵) → (𝐴 ∪ 𝐵) ≈ 𝐵) |
| 27 | | simplrr 778 |
. . . 4
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ ω ≼ 𝐵) → 𝐵 ≺ 𝑋) |
| 28 | | ensdomtr 9153 |
. . . 4
⊢ (((𝐴 ∪ 𝐵) ≈ 𝐵 ∧ 𝐵 ≺ 𝑋) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| 29 | 26, 27, 28 | syl2anc 584 |
. . 3
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ ω ≼ 𝐵) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| 30 | 19, 29 | syldan 591 |
. 2
⊢ ((((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) ∧ ¬ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ 𝑋) |
| 31 | 8, 30 | pm2.61dan 813 |
1
⊢ (((𝑋 ∈ dom card ∧ ω
≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) |