Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infunsdom1 Structured version   Visualization version   GIF version

Theorem infunsdom1 9627
 Description: The union of two sets that are strictly dominated by the infinite set 𝑋 is also dominated by 𝑋. This version of infunsdom 9628 assumes additionally that 𝐴 is the smaller of the two. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
infunsdom1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)

Proof of Theorem infunsdom1
StepHypRef Expression
1 simprl 770 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝐴𝐵)
2 domsdomtr 8639 . . . . 5 ((𝐴𝐵𝐵 ≺ ω) → 𝐴 ≺ ω)
31, 2sylan 583 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → 𝐴 ≺ ω)
4 unfi2 8774 . . . 4 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
53, 4sylancom 591 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
6 simpllr 775 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → ω ≼ 𝑋)
7 sdomdomtr 8637 . . 3 (((𝐴𝐵) ≺ ω ∧ ω ≼ 𝑋) → (𝐴𝐵) ≺ 𝑋)
85, 6, 7syl2anc 587 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ 𝑋)
9 omelon 9096 . . . . . 6 ω ∈ On
10 onenon 9365 . . . . . 6 (ω ∈ On → ω ∈ dom card)
119, 10ax-mp 5 . . . . 5 ω ∈ dom card
12 simpll 766 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝑋 ∈ dom card)
13 sdomdom 8523 . . . . . . 7 (𝐵𝑋𝐵𝑋)
1413ad2antll 728 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝐵𝑋)
15 numdom 9452 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐵𝑋) → 𝐵 ∈ dom card)
1612, 14, 15syl2anc 587 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝐵 ∈ dom card)
17 domtri2 9405 . . . . 5 ((ω ∈ dom card ∧ 𝐵 ∈ dom card) → (ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω))
1811, 16, 17sylancr 590 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω))
1918biimpar 481 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ¬ 𝐵 ≺ ω) → ω ≼ 𝐵)
20 uncom 4080 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
2116adantr 484 . . . . . 6 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → 𝐵 ∈ dom card)
22 simpr 488 . . . . . 6 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → ω ≼ 𝐵)
231adantr 484 . . . . . 6 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → 𝐴𝐵)
24 infunabs 9621 . . . . . 6 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐴𝐵) → (𝐵𝐴) ≈ 𝐵)
2521, 22, 23, 24syl3anc 1368 . . . . 5 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → (𝐵𝐴) ≈ 𝐵)
2620, 25eqbrtrid 5066 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → (𝐴𝐵) ≈ 𝐵)
27 simplrr 777 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → 𝐵𝑋)
28 ensdomtr 8640 . . . 4 (((𝐴𝐵) ≈ 𝐵𝐵𝑋) → (𝐴𝐵) ≺ 𝑋)
2926, 27, 28syl2anc 587 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → (𝐴𝐵) ≺ 𝑋)
3019, 29syldan 594 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ¬ 𝐵 ≺ ω) → (𝐴𝐵) ≺ 𝑋)
318, 30pm2.61dan 812 1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∈ wcel 2111   ∪ cun 3879   class class class wbr 5031  dom cdm 5520  Oncon0 6160  ωcom 7563   ≈ cen 8492   ≼ cdom 8493   ≺ csdm 8494  cardccrd 9351 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-oi 8961  df-dju 9317  df-card 9355 This theorem is referenced by:  infunsdom  9628
 Copyright terms: Public domain W3C validator