MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infunsdom1 Structured version   Visualization version   GIF version

Theorem infunsdom1 9624
Description: The union of two sets that are strictly dominated by the infinite set 𝑋 is also dominated by 𝑋. This version of infunsdom 9625 assumes additionally that 𝐴 is the smaller of the two. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Mario Carneiro, 3-May-2015.)
Assertion
Ref Expression
infunsdom1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)

Proof of Theorem infunsdom1
StepHypRef Expression
1 simprl 770 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝐴𝐵)
2 domsdomtr 8636 . . . . 5 ((𝐴𝐵𝐵 ≺ ω) → 𝐴 ≺ ω)
31, 2sylan 583 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → 𝐴 ≺ ω)
4 unfi2 8771 . . . 4 ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
53, 4sylancom 591 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ ω)
6 simpllr 775 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → ω ≼ 𝑋)
7 sdomdomtr 8634 . . 3 (((𝐴𝐵) ≺ ω ∧ ω ≼ 𝑋) → (𝐴𝐵) ≺ 𝑋)
85, 6, 7syl2anc 587 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ 𝐵 ≺ ω) → (𝐴𝐵) ≺ 𝑋)
9 omelon 9093 . . . . . 6 ω ∈ On
10 onenon 9362 . . . . . 6 (ω ∈ On → ω ∈ dom card)
119, 10ax-mp 5 . . . . 5 ω ∈ dom card
12 simpll 766 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝑋 ∈ dom card)
13 sdomdom 8520 . . . . . . 7 (𝐵𝑋𝐵𝑋)
1413ad2antll 728 . . . . . 6 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝐵𝑋)
15 numdom 9449 . . . . . 6 ((𝑋 ∈ dom card ∧ 𝐵𝑋) → 𝐵 ∈ dom card)
1612, 14, 15syl2anc 587 . . . . 5 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → 𝐵 ∈ dom card)
17 domtri2 9402 . . . . 5 ((ω ∈ dom card ∧ 𝐵 ∈ dom card) → (ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω))
1811, 16, 17sylancr 590 . . . 4 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω))
1918biimpar 481 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ¬ 𝐵 ≺ ω) → ω ≼ 𝐵)
20 uncom 4080 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
2116adantr 484 . . . . . 6 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → 𝐵 ∈ dom card)
22 simpr 488 . . . . . 6 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → ω ≼ 𝐵)
231adantr 484 . . . . . 6 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → 𝐴𝐵)
24 infunabs 9618 . . . . . 6 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐴𝐵) → (𝐵𝐴) ≈ 𝐵)
2521, 22, 23, 24syl3anc 1368 . . . . 5 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → (𝐵𝐴) ≈ 𝐵)
2620, 25eqbrtrid 5065 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → (𝐴𝐵) ≈ 𝐵)
27 simplrr 777 . . . 4 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → 𝐵𝑋)
28 ensdomtr 8637 . . . 4 (((𝐴𝐵) ≈ 𝐵𝐵𝑋) → (𝐴𝐵) ≺ 𝑋)
2926, 27, 28syl2anc 587 . . 3 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ω ≼ 𝐵) → (𝐴𝐵) ≺ 𝑋)
3019, 29syldan 594 . 2 ((((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) ∧ ¬ 𝐵 ≺ ω) → (𝐴𝐵) ≺ 𝑋)
318, 30pm2.61dan 812 1 (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴𝐵𝐵𝑋)) → (𝐴𝐵) ≺ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2111  cun 3879   class class class wbr 5030  dom cdm 5519  Oncon0 6159  ωcom 7560  cen 8489  cdom 8490  csdm 8491  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-dju 9314  df-card 9352
This theorem is referenced by:  infunsdom  9625
  Copyright terms: Public domain W3C validator