MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqle Structured version   Visualization version   GIF version

Theorem eqle 11340
Description: Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.)
Assertion
Ref Expression
eqle ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)

Proof of Theorem eqle
StepHypRef Expression
1 leid 11334 . 2 (𝐴 ∈ ℝ → 𝐴𝐴)
2 breq2 5146 . . 3 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
32biimpac 478 . 2 ((𝐴𝐴𝐴 = 𝐵) → 𝐴𝐵)
41, 3sylan 579 1 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099   class class class wbr 5142  cr 11131  cle 11273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-resscn 11189  ax-pre-lttri 11206
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278
This theorem is referenced by:  eqled  11341  pfxsuffeqwrdeq  14674  sqrtneglem  15239  leabs  15272  dvlip  25919  nmlno0lem  30596  nmblolbii  30602  nmlnop0iALT  31798  nmbdoplbi  31827  nmcoplbi  31831  nmbdfnlbi  31852  nmcfnlbi  31855  pjnmopi  31951  areacirc  37180  dvconstbi  43765  binomcxplemnn0  43780
  Copyright terms: Public domain W3C validator