MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqle Structured version   Visualization version   GIF version

Theorem eqle 11312
Description: Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.)
Assertion
Ref Expression
eqle ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)

Proof of Theorem eqle
StepHypRef Expression
1 leid 11306 . 2 (𝐴 ∈ ℝ → 𝐴𝐴)
2 breq2 5151 . . 3 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
32biimpac 479 . 2 ((𝐴𝐴𝐴 = 𝐵) → 𝐴𝐵)
41, 3sylan 580 1 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   class class class wbr 5147  cr 11105  cle 11245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-pre-lttri 11180
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250
This theorem is referenced by:  eqled  11313  pfxsuffeqwrdeq  14644  sqrtneglem  15209  leabs  15242  dvlip  25501  nmlno0lem  30033  nmblolbii  30039  nmlnop0iALT  31235  nmbdoplbi  31264  nmcoplbi  31268  nmbdfnlbi  31289  nmcfnlbi  31292  pjnmopi  31388  areacirc  36569  dvconstbi  43078  binomcxplemnn0  43093
  Copyright terms: Public domain W3C validator