| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqle | Structured version Visualization version GIF version | ||
| Description: Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.) |
| Ref | Expression |
|---|---|
| eqle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leid 11220 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
| 2 | breq2 5099 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≤ 𝐴 ↔ 𝐴 ≤ 𝐵)) | |
| 3 | 2 | biimpac 478 | . 2 ⊢ ((𝐴 ≤ 𝐴 ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) |
| 4 | 1, 3 | sylan 580 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ℝcr 11016 ≤ cle 11158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-pre-lttri 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 |
| This theorem is referenced by: eqled 11227 pfxsuffeqwrdeq 14612 sqrtneglem 15180 leabs 15213 dvlip 25945 nmlno0lem 30794 nmblolbii 30800 nmlnop0iALT 31996 nmbdoplbi 32025 nmcoplbi 32029 nmbdfnlbi 32050 nmcfnlbi 32053 pjnmopi 32149 areacirc 37826 dvconstbi 44491 binomcxplemnn0 44506 |
| Copyright terms: Public domain | W3C validator |