MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqle Structured version   Visualization version   GIF version

Theorem eqle 11262
Description: Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.)
Assertion
Ref Expression
eqle ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)

Proof of Theorem eqle
StepHypRef Expression
1 leid 11256 . 2 (𝐴 ∈ ℝ → 𝐴𝐴)
2 breq2 5110 . . 3 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
32biimpac 480 . 2 ((𝐴𝐴𝐴 = 𝐵) → 𝐴𝐵)
41, 3sylan 581 1 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107   class class class wbr 5106  cr 11055  cle 11195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11113  ax-pre-lttri 11130
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200
This theorem is referenced by:  eqled  11263  pfxsuffeqwrdeq  14592  sqrtneglem  15157  leabs  15190  dvlip  25373  nmlno0lem  29777  nmblolbii  29783  nmlnop0iALT  30979  nmbdoplbi  31008  nmcoplbi  31012  nmbdfnlbi  31033  nmcfnlbi  31036  pjnmopi  31132  areacirc  36217  dvconstbi  42702  binomcxplemnn0  42717
  Copyright terms: Public domain W3C validator