HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmcoplbi Structured version   Visualization version   GIF version

Theorem nmcoplbi 29719
Description: A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmcopex.1 𝑇 ∈ LinOp
nmcopex.2 𝑇 ∈ ContOp
Assertion
Ref Expression
nmcoplbi (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))

Proof of Theorem nmcoplbi
StepHypRef Expression
1 0le0 11727 . . . . 5 0 ≤ 0
21a1i 11 . . . 4 (𝐴 = 0 → 0 ≤ 0)
3 fveq2 6667 . . . . . . 7 (𝐴 = 0 → (𝑇𝐴) = (𝑇‘0))
4 nmcopex.1 . . . . . . . 8 𝑇 ∈ LinOp
54lnop0i 29661 . . . . . . 7 (𝑇‘0) = 0
63, 5syl6eq 2877 . . . . . 6 (𝐴 = 0 → (𝑇𝐴) = 0)
76fveq2d 6671 . . . . 5 (𝐴 = 0 → (norm‘(𝑇𝐴)) = (norm‘0))
8 norm0 28819 . . . . 5 (norm‘0) = 0
97, 8syl6eq 2877 . . . 4 (𝐴 = 0 → (norm‘(𝑇𝐴)) = 0)
10 fveq2 6667 . . . . . . 7 (𝐴 = 0 → (norm𝐴) = (norm‘0))
1110, 8syl6eq 2877 . . . . . 6 (𝐴 = 0 → (norm𝐴) = 0)
1211oveq2d 7164 . . . . 5 (𝐴 = 0 → ((normop𝑇) · (norm𝐴)) = ((normop𝑇) · 0))
13 nmcopex.2 . . . . . . . 8 𝑇 ∈ ContOp
144, 13nmcopexi 29718 . . . . . . 7 (normop𝑇) ∈ ℝ
1514recni 10644 . . . . . 6 (normop𝑇) ∈ ℂ
1615mul01i 10819 . . . . 5 ((normop𝑇) · 0) = 0
1712, 16syl6eq 2877 . . . 4 (𝐴 = 0 → ((normop𝑇) · (norm𝐴)) = 0)
182, 9, 173brtr4d 5095 . . 3 (𝐴 = 0 → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
1918adantl 482 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 = 0) → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
20 normcl 28816 . . . . . . . . 9 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
2120adantr 481 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℝ)
22 normne0 28821 . . . . . . . . 9 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
2322biimpar 478 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ≠ 0)
2421, 23rereccld 11456 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℝ)
25 normgt0 28818 . . . . . . . . . 10 (𝐴 ∈ ℋ → (𝐴 ≠ 0 ↔ 0 < (norm𝐴)))
2625biimpa 477 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (norm𝐴))
2721, 26recgt0d 11563 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (1 / (norm𝐴)))
28 0re 10632 . . . . . . . . 9 0 ∈ ℝ
29 ltle 10718 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / (norm𝐴)) ∈ ℝ) → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
3028, 29mpan 686 . . . . . . . 8 ((1 / (norm𝐴)) ∈ ℝ → (0 < (1 / (norm𝐴)) → 0 ≤ (1 / (norm𝐴))))
3124, 27, 30sylc 65 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 ≤ (1 / (norm𝐴)))
3224, 31absidd 14772 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (abs‘(1 / (norm𝐴))) = (1 / (norm𝐴)))
3332oveq1d 7163 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))) = ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))))
3424recnd 10658 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (1 / (norm𝐴)) ∈ ℂ)
35 simpl 483 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℋ)
364lnopmuli 29663 . . . . . . . 8 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3734, 35, 36syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇‘((1 / (norm𝐴)) · 𝐴)) = ((1 / (norm𝐴)) · (𝑇𝐴)))
3837fveq2d 6671 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = (norm‘((1 / (norm𝐴)) · (𝑇𝐴))))
394lnopfi 29660 . . . . . . . . 9 𝑇: ℋ⟶ ℋ
4039ffvelrni 6846 . . . . . . . 8 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
4140adantr 481 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (𝑇𝐴) ∈ ℋ)
42 norm-iii 28831 . . . . . . 7 (((1 / (norm𝐴)) ∈ ℂ ∧ (𝑇𝐴) ∈ ℋ) → (norm‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
4334, 41, 42syl2anc 584 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · (𝑇𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
4438, 43eqtrd 2861 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) = ((abs‘(1 / (norm𝐴))) · (norm‘(𝑇𝐴))))
45 normcl 28816 . . . . . . . . 9 ((𝑇𝐴) ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
4640, 45syl 17 . . . . . . . 8 (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
4746adantr 481 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ∈ ℝ)
4847recnd 10658 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ∈ ℂ)
4921recnd 10658 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm𝐴) ∈ ℂ)
5048, 49, 23divrec2d 11409 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) = ((1 / (norm𝐴)) · (norm‘(𝑇𝐴))))
5133, 44, 503eqtr4rd 2872 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) = (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))))
52 hvmulcl 28704 . . . . . 6 (((1 / (norm𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
5334, 35, 52syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((1 / (norm𝐴)) · 𝐴) ∈ ℋ)
54 normcl 28816 . . . . . . 7 (((1 / (norm𝐴)) · 𝐴) ∈ ℋ → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
5553, 54syl 17 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ)
56 norm1 28940 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) = 1)
57 eqle 10731 . . . . . 6 (((norm‘((1 / (norm𝐴)) · 𝐴)) ∈ ℝ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) = 1) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
5855, 56, 57syl2anc 584 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1)
59 nmoplb 29598 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ ((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
6039, 59mp3an1 1441 . . . . 5 ((((1 / (norm𝐴)) · 𝐴) ∈ ℋ ∧ (norm‘((1 / (norm𝐴)) · 𝐴)) ≤ 1) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
6153, 58, 60syl2anc 584 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇‘((1 / (norm𝐴)) · 𝐴))) ≤ (normop𝑇))
6251, 61eqbrtrd 5085 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → ((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇))
6314a1i 11 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (normop𝑇) ∈ ℝ)
64 ledivmul2 11508 . . . 4 (((norm‘(𝑇𝐴)) ∈ ℝ ∧ (normop𝑇) ∈ ℝ ∧ ((norm𝐴) ∈ ℝ ∧ 0 < (norm𝐴))) → (((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇) ↔ (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
6547, 63, 21, 26, 64syl112anc 1368 . . 3 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (((norm‘(𝑇𝐴)) / (norm𝐴)) ≤ (normop𝑇) ↔ (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴))))
6662, 65mpbid 233 . 2 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
6719, 66pm2.61dane 3109 1 (𝐴 ∈ ℋ → (norm‘(𝑇𝐴)) ≤ ((normop𝑇) · (norm𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3021   class class class wbr 5063  wf 6348  cfv 6352  (class class class)co 7148  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  cle 10665   / cdiv 11286  abscabs 14583  chba 28610   · csm 28612  normcno 28614  0c0v 28615  normopcnop 28636  ContOpccop 28637  LinOpclo 28638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-hilex 28690  ax-hfvadd 28691  ax-hvcom 28692  ax-hvass 28693  ax-hv0cl 28694  ax-hvaddid 28695  ax-hfvmul 28696  ax-hvmulid 28697  ax-hvmulass 28698  ax-hvdistr1 28699  ax-hvdistr2 28700  ax-hvmul0 28701  ax-hfi 28770  ax-his1 28773  ax-his2 28774  ax-his3 28775  ax-his4 28776
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-grpo 28184  df-gid 28185  df-ablo 28236  df-vc 28250  df-nv 28283  df-va 28286  df-ba 28287  df-sm 28288  df-0v 28289  df-nmcv 28291  df-hnorm 28659  df-hba 28660  df-hvsub 28662  df-nmop 29530  df-cnop 29531  df-lnop 29532
This theorem is referenced by:  nmcoplb  29721  cnlnadjlem2  29759  cnlnadjlem7  29764
  Copyright terms: Public domain W3C validator