Proof of Theorem nmcoplbi
Step | Hyp | Ref
| Expression |
1 | | 0le0 12004 |
. . . . 5
⊢ 0 ≤
0 |
2 | 1 | a1i 11 |
. . . 4
⊢ (𝐴 = 0ℎ → 0
≤ 0) |
3 | | fveq2 6756 |
. . . . . . 7
⊢ (𝐴 = 0ℎ →
(𝑇‘𝐴) = (𝑇‘0ℎ)) |
4 | | nmcopex.1 |
. . . . . . . 8
⊢ 𝑇 ∈ LinOp |
5 | 4 | lnop0i 30233 |
. . . . . . 7
⊢ (𝑇‘0ℎ) =
0ℎ |
6 | 3, 5 | eqtrdi 2795 |
. . . . . 6
⊢ (𝐴 = 0ℎ →
(𝑇‘𝐴) = 0ℎ) |
7 | 6 | fveq2d 6760 |
. . . . 5
⊢ (𝐴 = 0ℎ →
(normℎ‘(𝑇‘𝐴)) =
(normℎ‘0ℎ)) |
8 | | norm0 29391 |
. . . . 5
⊢
(normℎ‘0ℎ) =
0 |
9 | 7, 8 | eqtrdi 2795 |
. . . 4
⊢ (𝐴 = 0ℎ →
(normℎ‘(𝑇‘𝐴)) = 0) |
10 | | fveq2 6756 |
. . . . . . 7
⊢ (𝐴 = 0ℎ →
(normℎ‘𝐴) =
(normℎ‘0ℎ)) |
11 | 10, 8 | eqtrdi 2795 |
. . . . . 6
⊢ (𝐴 = 0ℎ →
(normℎ‘𝐴) = 0) |
12 | 11 | oveq2d 7271 |
. . . . 5
⊢ (𝐴 = 0ℎ →
((normop‘𝑇) ·
(normℎ‘𝐴)) = ((normop‘𝑇) · 0)) |
13 | | nmcopex.2 |
. . . . . . . 8
⊢ 𝑇 ∈ ContOp |
14 | 4, 13 | nmcopexi 30290 |
. . . . . . 7
⊢
(normop‘𝑇) ∈ ℝ |
15 | 14 | recni 10920 |
. . . . . 6
⊢
(normop‘𝑇) ∈ ℂ |
16 | 15 | mul01i 11095 |
. . . . 5
⊢
((normop‘𝑇) · 0) = 0 |
17 | 12, 16 | eqtrdi 2795 |
. . . 4
⊢ (𝐴 = 0ℎ →
((normop‘𝑇) ·
(normℎ‘𝐴)) = 0) |
18 | 2, 9, 17 | 3brtr4d 5102 |
. . 3
⊢ (𝐴 = 0ℎ →
(normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴))) |
19 | 18 | adantl 481 |
. 2
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 = 0ℎ) →
(normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴))) |
20 | | normcl 29388 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℋ →
(normℎ‘𝐴) ∈ ℝ) |
21 | 20 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℝ) |
22 | | normne0 29393 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℋ →
((normℎ‘𝐴) ≠ 0 ↔ 𝐴 ≠
0ℎ)) |
23 | 22 | biimpar 477 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ≠ 0) |
24 | 21, 23 | rereccld 11732 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℝ) |
25 | | normgt0 29390 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℋ → (𝐴 ≠ 0ℎ
↔ 0 < (normℎ‘𝐴))) |
26 | 25 | biimpa 476 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (normℎ‘𝐴)) |
27 | 21, 26 | recgt0d 11839 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 < (1 / (normℎ‘𝐴))) |
28 | | 0re 10908 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
29 | | ltle 10994 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ (1 / (normℎ‘𝐴)) ∈ ℝ) → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
30 | 28, 29 | mpan 686 |
. . . . . . . 8
⊢ ((1 /
(normℎ‘𝐴)) ∈ ℝ → (0 < (1 /
(normℎ‘𝐴)) → 0 ≤ (1 /
(normℎ‘𝐴)))) |
31 | 24, 27, 30 | sylc 65 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 0 ≤ (1 / (normℎ‘𝐴))) |
32 | 24, 31 | absidd 15062 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (abs‘(1 / (normℎ‘𝐴))) = (1 /
(normℎ‘𝐴))) |
33 | 32 | oveq1d 7270 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((abs‘(1 / (normℎ‘𝐴))) ·
(normℎ‘(𝑇‘𝐴))) = ((1 /
(normℎ‘𝐴)) ·
(normℎ‘(𝑇‘𝐴)))) |
34 | 24 | recnd 10934 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (1 / (normℎ‘𝐴)) ∈ ℂ) |
35 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ 𝐴 ∈
ℋ) |
36 | 4 | lnopmuli 30235 |
. . . . . . . 8
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = ((1 /
(normℎ‘𝐴)) ·ℎ (𝑇‘𝐴))) |
37 | 34, 35, 36 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = ((1 /
(normℎ‘𝐴)) ·ℎ (𝑇‘𝐴))) |
38 | 37 | fveq2d 6760 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) =
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ (𝑇‘𝐴)))) |
39 | 4 | lnopfi 30232 |
. . . . . . . . 9
⊢ 𝑇: ℋ⟶
ℋ |
40 | 39 | ffvelrni 6942 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
41 | 40 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (𝑇‘𝐴) ∈
ℋ) |
42 | | norm-iii 29403 |
. . . . . . 7
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ (𝑇‘𝐴) ∈ ℋ) →
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ (𝑇‘𝐴))) = ((abs‘(1 /
(normℎ‘𝐴))) ·
(normℎ‘(𝑇‘𝐴)))) |
43 | 34, 41, 42 | syl2anc 583 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ (𝑇‘𝐴))) = ((abs‘(1 /
(normℎ‘𝐴))) ·
(normℎ‘(𝑇‘𝐴)))) |
44 | 38, 43 | eqtrd 2778 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) = ((abs‘(1 /
(normℎ‘𝐴))) ·
(normℎ‘(𝑇‘𝐴)))) |
45 | | normcl 29388 |
. . . . . . . . 9
⊢ ((𝑇‘𝐴) ∈ ℋ →
(normℎ‘(𝑇‘𝐴)) ∈ ℝ) |
46 | 40, 45 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ ℋ →
(normℎ‘(𝑇‘𝐴)) ∈ ℝ) |
47 | 46 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘(𝑇‘𝐴)) ∈ ℝ) |
48 | 47 | recnd 10934 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘(𝑇‘𝐴)) ∈ ℂ) |
49 | 21 | recnd 10934 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘𝐴) ∈ ℂ) |
50 | 48, 49, 23 | divrec2d 11685 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘(𝑇‘𝐴)) / (normℎ‘𝐴)) = ((1 /
(normℎ‘𝐴)) ·
(normℎ‘(𝑇‘𝐴)))) |
51 | 33, 44, 50 | 3eqtr4rd 2789 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘(𝑇‘𝐴)) / (normℎ‘𝐴)) =
(normℎ‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)))) |
52 | | hvmulcl 29276 |
. . . . . 6
⊢ (((1 /
(normℎ‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℋ) → ((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
53 | 34, 35, 52 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((1 / (normℎ‘𝐴)) ·ℎ 𝐴) ∈
ℋ) |
54 | | normcl 29388 |
. . . . . . 7
⊢ (((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ →
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ∈ ℝ) |
55 | 53, 54 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ∈
ℝ) |
56 | | norm1 29512 |
. . . . . 6
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) = 1) |
57 | | eqle 11007 |
. . . . . 6
⊢
(((normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ∈ ℝ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) = 1) →
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) |
58 | 55, 56, 57 | syl2anc 583 |
. . . . 5
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴)) ≤ 1) |
59 | | nmoplb 30170 |
. . . . . 6
⊢ ((𝑇: ℋ⟶ ℋ ∧
((1 / (normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) →
(normℎ‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normop‘𝑇)) |
60 | 39, 59 | mp3an1 1446 |
. . . . 5
⊢ ((((1 /
(normℎ‘𝐴)) ·ℎ 𝐴) ∈ ℋ ∧
(normℎ‘((1 / (normℎ‘𝐴))
·ℎ 𝐴)) ≤ 1) →
(normℎ‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normop‘𝑇)) |
61 | 53, 58, 60 | syl2anc 583 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘(𝑇‘((1 /
(normℎ‘𝐴)) ·ℎ 𝐴))) ≤
(normop‘𝑇)) |
62 | 51, 61 | eqbrtrd 5092 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ ((normℎ‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normop‘𝑇)) |
63 | 14 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normop‘𝑇) ∈ ℝ) |
64 | | ledivmul2 11784 |
. . . 4
⊢
(((normℎ‘(𝑇‘𝐴)) ∈ ℝ ∧
(normop‘𝑇)
∈ ℝ ∧ ((normℎ‘𝐴) ∈ ℝ ∧ 0 <
(normℎ‘𝐴))) →
(((normℎ‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normop‘𝑇)
↔ (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴)))) |
65 | 47, 63, 21, 26, 64 | syl112anc 1372 |
. . 3
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (((normℎ‘(𝑇‘𝐴)) / (normℎ‘𝐴)) ≤
(normop‘𝑇)
↔ (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴)))) |
66 | 62, 65 | mpbid 231 |
. 2
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ)
→ (normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴))) |
67 | 19, 66 | pm2.61dane 3031 |
1
⊢ (𝐴 ∈ ℋ →
(normℎ‘(𝑇‘𝐴)) ≤ ((normop‘𝑇) ·
(normℎ‘𝐴))) |