Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leabs | Structured version Visualization version GIF version |
Description: A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.) |
Ref | Expression |
---|---|
leabs | ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10865 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
3 | absid 14892 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
4 | eqcom 2746 | . . . 4 ⊢ ((abs‘𝐴) = 𝐴 ↔ 𝐴 = (abs‘𝐴)) | |
5 | eqle 10963 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = (abs‘𝐴)) → 𝐴 ≤ (abs‘𝐴)) | |
6 | 4, 5 | sylan2b 597 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) = 𝐴) → 𝐴 ≤ (abs‘𝐴)) |
7 | 3, 6 | syldan 594 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ≤ (abs‘𝐴)) |
8 | recn 10848 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | absge0 14883 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → 0 ≤ (abs‘𝐴)) |
11 | abscl 14874 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
12 | 8, 11 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
13 | 0re 10864 | . . . . . 6 ⊢ 0 ∈ ℝ | |
14 | letr 10955 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → ((𝐴 ≤ 0 ∧ 0 ≤ (abs‘𝐴)) → 𝐴 ≤ (abs‘𝐴))) | |
15 | 13, 14 | mp3an2 1451 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → ((𝐴 ≤ 0 ∧ 0 ≤ (abs‘𝐴)) → 𝐴 ≤ (abs‘𝐴))) |
16 | 12, 15 | mpdan 687 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ 0 ∧ 0 ≤ (abs‘𝐴)) → 𝐴 ≤ (abs‘𝐴))) |
17 | 10, 16 | mpan2d 694 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 → 𝐴 ≤ (abs‘𝐴))) |
18 | 17 | imp 410 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ≤ (abs‘𝐴)) |
19 | 1, 2, 7, 18 | lecasei 10967 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 class class class wbr 5069 ‘cfv 6400 ℂcc 10756 ℝcr 10757 0cc0 10758 ≤ cle 10897 abscabs 14829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 ax-pre-sup 10836 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-er 8414 df-en 8650 df-dom 8651 df-sdom 8652 df-sup 9087 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-div 11519 df-nn 11860 df-2 11922 df-3 11923 df-n0 12120 df-z 12206 df-uz 12468 df-rp 12616 df-seq 13606 df-exp 13667 df-cj 14694 df-re 14695 df-im 14696 df-sqrt 14830 df-abs 14831 |
This theorem is referenced by: abslt 14910 absle 14911 abssubne0 14912 releabs 14917 leabsi 14975 leabsd 15010 aalioulem3 25258 nmoub3i 28885 |
Copyright terms: Public domain | W3C validator |