![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leabs | Structured version Visualization version GIF version |
Description: A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.) |
Ref | Expression |
---|---|
leabs | ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10361 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
3 | absid 14414 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
4 | eqcom 2833 | . . . 4 ⊢ ((abs‘𝐴) = 𝐴 ↔ 𝐴 = (abs‘𝐴)) | |
5 | eqle 10459 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = (abs‘𝐴)) → 𝐴 ≤ (abs‘𝐴)) | |
6 | 4, 5 | sylan2b 589 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) = 𝐴) → 𝐴 ≤ (abs‘𝐴)) |
7 | 3, 6 | syldan 587 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ≤ (abs‘𝐴)) |
8 | recn 10343 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | absge0 14405 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → 0 ≤ (abs‘𝐴)) |
11 | abscl 14396 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
12 | 8, 11 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) ∈ ℝ) |
13 | 0re 10359 | . . . . . 6 ⊢ 0 ∈ ℝ | |
14 | letr 10451 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → ((𝐴 ≤ 0 ∧ 0 ≤ (abs‘𝐴)) → 𝐴 ≤ (abs‘𝐴))) | |
15 | 13, 14 | mp3an2 1579 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ) → ((𝐴 ≤ 0 ∧ 0 ≤ (abs‘𝐴)) → 𝐴 ≤ (abs‘𝐴))) |
16 | 12, 15 | mpdan 680 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((𝐴 ≤ 0 ∧ 0 ≤ (abs‘𝐴)) → 𝐴 ≤ (abs‘𝐴))) |
17 | 10, 16 | mpan2d 687 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 → 𝐴 ≤ (abs‘𝐴))) |
18 | 17 | imp 397 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ≤ (abs‘𝐴)) |
19 | 1, 2, 7, 18 | lecasei 10463 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 class class class wbr 4874 ‘cfv 6124 ℂcc 10251 ℝcr 10252 0cc0 10253 ≤ cle 10393 abscabs 14352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-pre-sup 10331 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-om 7328 df-2nd 7430 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-sup 8618 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-nn 11352 df-2 11415 df-3 11416 df-n0 11620 df-z 11706 df-uz 11970 df-rp 12114 df-seq 13097 df-exp 13156 df-cj 14217 df-re 14218 df-im 14219 df-sqrt 14353 df-abs 14354 |
This theorem is referenced by: abslt 14432 absle 14433 abssubne0 14434 releabs 14439 leabsi 14497 leabsd 14531 aalioulem3 24489 nmoub3i 28184 |
Copyright terms: Public domain | W3C validator |