Step | Hyp | Ref
| Expression |
1 | | negf1o.1 |
. 2
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) |
2 | | negeq 11143 |
. . . 4
⊢ (𝑛 = -𝑥 → -𝑛 = --𝑥) |
3 | 2 | eleq1d 2823 |
. . 3
⊢ (𝑛 = -𝑥 → (-𝑛 ∈ 𝐴 ↔ --𝑥 ∈ 𝐴)) |
4 | | ssel 3910 |
. . . . 5
⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → 𝑥 ∈ ℝ)) |
5 | | renegcl 11214 |
. . . . 5
⊢ (𝑥 ∈ ℝ → -𝑥 ∈
ℝ) |
6 | 4, 5 | syl6 35 |
. . . 4
⊢ (𝐴 ⊆ ℝ → (𝑥 ∈ 𝐴 → -𝑥 ∈ ℝ)) |
7 | 6 | imp 406 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → -𝑥 ∈ ℝ) |
8 | 4 | imp 406 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
9 | | recn 10892 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
10 | | negneg 11201 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → --𝑥 = 𝑥) |
11 | 10 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → 𝑥 = --𝑥) |
12 | 9, 11 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → 𝑥 = --𝑥) |
13 | 12 | eleq1d 2823 |
. . . . . 6
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ 𝐴 ↔ --𝑥 ∈ 𝐴)) |
14 | 13 | biimpcd 248 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ ℝ → --𝑥 ∈ 𝐴)) |
15 | 14 | adantl 481 |
. . . 4
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ ℝ → --𝑥 ∈ 𝐴)) |
16 | 8, 15 | mpd 15 |
. . 3
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → --𝑥 ∈ 𝐴) |
17 | 3, 7, 16 | elrabd 3619 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴) → -𝑥 ∈ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴}) |
18 | | negeq 11143 |
. . . . . 6
⊢ (𝑛 = 𝑦 → -𝑛 = -𝑦) |
19 | 18 | eleq1d 2823 |
. . . . 5
⊢ (𝑛 = 𝑦 → (-𝑛 ∈ 𝐴 ↔ -𝑦 ∈ 𝐴)) |
20 | 19 | elrab 3617 |
. . . 4
⊢ (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} ↔ (𝑦 ∈ ℝ ∧ -𝑦 ∈ 𝐴)) |
21 | | simpr 484 |
. . . . 5
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ 𝐴) → -𝑦 ∈ 𝐴) |
22 | 21 | a1i 11 |
. . . 4
⊢ (𝐴 ⊆ ℝ → ((𝑦 ∈ ℝ ∧ -𝑦 ∈ 𝐴) → -𝑦 ∈ 𝐴)) |
23 | 20, 22 | syl5bi 241 |
. . 3
⊢ (𝐴 ⊆ ℝ → (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} → -𝑦 ∈ 𝐴)) |
24 | 23 | imp 406 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴}) → -𝑦 ∈ 𝐴) |
25 | 4, 9 | syl6com 37 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ)) |
26 | 25 | adantl 481 |
. . . . . . . 8
⊢ (((𝑦 ∈ ℝ ∧ -𝑦 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ)) |
27 | 26 | imp 406 |
. . . . . . 7
⊢ ((((𝑦 ∈ ℝ ∧ -𝑦 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑥 ∈ ℂ) |
28 | | recn 10892 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
29 | 28 | ad3antrrr 726 |
. . . . . . 7
⊢ ((((𝑦 ∈ ℝ ∧ -𝑦 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑦 ∈ ℂ) |
30 | | negcon2 11204 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
31 | 27, 29, 30 | syl2anc 583 |
. . . . . 6
⊢ ((((𝑦 ∈ ℝ ∧ -𝑦 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
32 | 31 | exp31 419 |
. . . . 5
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ 𝐴) → (𝑥 ∈ 𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)))) |
33 | 20, 32 | sylbi 216 |
. . . 4
⊢ (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴} → (𝑥 ∈ 𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)))) |
34 | 33 | impcom 407 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴}) → (𝐴 ⊆ ℝ → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥))) |
35 | 34 | impcom 407 |
. 2
⊢ ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴})) → (𝑥 = -𝑦 ↔ 𝑦 = -𝑥)) |
36 | 1, 17, 24, 35 | f1o2d 7501 |
1
⊢ (𝐴 ⊆ ℝ → 𝐹:𝐴–1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛 ∈ 𝐴}) |