MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negf1o Structured version   Visualization version   GIF version

Theorem negf1o 11547
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
negf1o.1 𝐹 = (𝑥𝐴 ↦ -𝑥)
Assertion
Ref Expression
negf1o (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
Distinct variable group:   𝐴,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem negf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 negf1o.1 . 2 𝐹 = (𝑥𝐴 ↦ -𝑥)
2 negeq 11352 . . . 4 (𝑛 = -𝑥 → -𝑛 = --𝑥)
32eleq1d 2816 . . 3 (𝑛 = -𝑥 → (-𝑛𝐴 ↔ --𝑥𝐴))
4 ssel 3923 . . . . 5 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
5 renegcl 11424 . . . . 5 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
64, 5syl6 35 . . . 4 (𝐴 ⊆ ℝ → (𝑥𝐴 → -𝑥 ∈ ℝ))
76imp 406 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → -𝑥 ∈ ℝ)
84imp 406 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
9 recn 11096 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
10 negneg 11411 . . . . . . . . 9 (𝑥 ∈ ℂ → --𝑥 = 𝑥)
1110eqcomd 2737 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥 = --𝑥)
129, 11syl 17 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 = --𝑥)
1312eleq1d 2816 . . . . . 6 (𝑥 ∈ ℝ → (𝑥𝐴 ↔ --𝑥𝐴))
1413biimpcd 249 . . . . 5 (𝑥𝐴 → (𝑥 ∈ ℝ → --𝑥𝐴))
1514adantl 481 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (𝑥 ∈ ℝ → --𝑥𝐴))
168, 15mpd 15 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → --𝑥𝐴)
173, 7, 16elrabd 3644 . 2 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → -𝑥 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴})
18 negeq 11352 . . . . . 6 (𝑛 = 𝑦 → -𝑛 = -𝑦)
1918eleq1d 2816 . . . . 5 (𝑛 = 𝑦 → (-𝑛𝐴 ↔ -𝑦𝐴))
2019elrab 3642 . . . 4 (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↔ (𝑦 ∈ ℝ ∧ -𝑦𝐴))
21 simpr 484 . . . . 5 ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → -𝑦𝐴)
2221a1i 11 . . . 4 (𝐴 ⊆ ℝ → ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → -𝑦𝐴))
2320, 22biimtrid 242 . . 3 (𝐴 ⊆ ℝ → (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} → -𝑦𝐴))
2423imp 406 . 2 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴}) → -𝑦𝐴)
254, 9syl6com 37 . . . . . . . . 9 (𝑥𝐴 → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ))
2625adantl 481 . . . . . . . 8 (((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ))
2726imp 406 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑥 ∈ ℂ)
28 recn 11096 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
2928ad3antrrr 730 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑦 ∈ ℂ)
30 negcon2 11414 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
3127, 29, 30syl2anc 584 . . . . . 6 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
3231exp31 419 . . . . 5 ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → (𝑥𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥))))
3320, 32sylbi 217 . . . 4 (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} → (𝑥𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥))))
3433impcom 407 . . 3 ((𝑥𝐴𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴}) → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥)))
3534impcom 407 . 2 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴})) → (𝑥 = -𝑦𝑦 = -𝑥))
361, 17, 24, 35f1o2d 7600 1 (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  wss 3897  cmpt 5170  1-1-ontowf1o 6480  cc 11004  cr 11005  -cneg 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-ltxr 11151  df-sub 11346  df-neg 11347
This theorem is referenced by:  negfi  12071
  Copyright terms: Public domain W3C validator