MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflf1o Structured version   Visualization version   GIF version

Theorem dvdsflf1o 27245
Description: A bijection from the numbers less than 𝑁 / 𝐴 to the multiples of 𝐴 less than 𝑁. Useful for some sum manipulations. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
dvdsflf1o.1 (𝜑𝐴 ∈ ℝ)
dvdsflf1o.2 (𝜑𝑁 ∈ ℕ)
dvdsflf1o.f 𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛))
Assertion
Ref Expression
dvdsflf1o (𝜑𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥,𝑛)

Proof of Theorem dvdsflf1o
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvdsflf1o.f . 2 𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛))
2 breq2 5152 . . 3 (𝑥 = (𝑁 · 𝑛) → (𝑁𝑥𝑁 ∥ (𝑁 · 𝑛)))
3 dvdsflf1o.2 . . . . 5 (𝜑𝑁 ∈ ℕ)
4 elfznn 13590 . . . . 5 (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) → 𝑛 ∈ ℕ)
5 nnmulcl 12288 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑁 · 𝑛) ∈ ℕ)
63, 4, 5syl2an 596 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ ℕ)
7 dvdsflf1o.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
87, 3nndivred 12318 . . . . . . . 8 (𝜑 → (𝐴 / 𝑁) ∈ ℝ)
9 fznnfl 13899 . . . . . . . 8 ((𝐴 / 𝑁) ∈ ℝ → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑁))))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑁))))
1110simplbda 499 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ≤ (𝐴 / 𝑁))
124adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℕ)
1312nnred 12279 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℝ)
147adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝐴 ∈ ℝ)
153nnred 12279 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
1615adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑁 ∈ ℝ)
173nngt0d 12313 . . . . . . . 8 (𝜑 → 0 < 𝑁)
1817adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 0 < 𝑁)
19 lemuldiv2 12147 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝑛) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑁)))
2013, 14, 16, 18, 19syl112anc 1373 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑁)))
2111, 20mpbird 257 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ≤ 𝐴)
223nnzd 12638 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
23 elfzelz 13561 . . . . . . 7 (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) → 𝑛 ∈ ℤ)
24 zmulcl 12664 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 · 𝑛) ∈ ℤ)
2522, 23, 24syl2an 596 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ ℤ)
26 flge 13842 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 · 𝑛) ∈ ℤ) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ (𝑁 · 𝑛) ≤ (⌊‘𝐴)))
2714, 25, 26syl2anc 584 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ (𝑁 · 𝑛) ≤ (⌊‘𝐴)))
2821, 27mpbid 232 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ≤ (⌊‘𝐴))
297flcld 13835 . . . . . 6 (𝜑 → (⌊‘𝐴) ∈ ℤ)
3029adantr 480 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (⌊‘𝐴) ∈ ℤ)
31 fznn 13629 . . . . 5 ((⌊‘𝐴) ∈ ℤ → ((𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)) ↔ ((𝑁 · 𝑛) ∈ ℕ ∧ (𝑁 · 𝑛) ≤ (⌊‘𝐴))))
3230, 31syl 17 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)) ↔ ((𝑁 · 𝑛) ∈ ℕ ∧ (𝑁 · 𝑛) ≤ (⌊‘𝐴))))
336, 28, 32mpbir2and 713 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)))
34 dvdsmul1 16312 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑛))
3522, 23, 34syl2an 596 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑁 ∥ (𝑁 · 𝑛))
362, 33, 35elrabd 3697 . 2 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
37 breq2 5152 . . . . . . 7 (𝑥 = 𝑚 → (𝑁𝑥𝑁𝑚))
3837elrab 3695 . . . . . 6 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} ↔ (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑁𝑚))
3938simprbi 496 . . . . 5 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} → 𝑁𝑚)
4039adantl 481 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁𝑚)
41 elrabi 3690 . . . . . . 7 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} → 𝑚 ∈ (1...(⌊‘𝐴)))
4241adantl 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ (1...(⌊‘𝐴)))
43 elfznn 13590 . . . . . 6 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
4442, 43syl 17 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℕ)
453adantr 480 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁 ∈ ℕ)
46 nndivdvds 16296 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑚 ↔ (𝑚 / 𝑁) ∈ ℕ))
4744, 45, 46syl2anc 584 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑁𝑚 ↔ (𝑚 / 𝑁) ∈ ℕ))
4840, 47mpbid 232 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ∈ ℕ)
49 fznnfl 13899 . . . . . . 7 (𝐴 ∈ ℝ → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
507, 49syl 17 . . . . . 6 (𝜑 → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
5150simplbda 499 . . . . 5 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚𝐴)
5241, 51sylan2 593 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚𝐴)
5344nnred 12279 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℝ)
547adantr 480 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝐴 ∈ ℝ)
5515adantr 480 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁 ∈ ℝ)
5617adantr 480 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 0 < 𝑁)
57 lediv1 12131 . . . . 5 ((𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑚𝐴 ↔ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)))
5853, 54, 55, 56, 57syl112anc 1373 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚𝐴 ↔ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)))
5952, 58mpbid 232 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))
608adantr 480 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝐴 / 𝑁) ∈ ℝ)
61 fznnfl 13899 . . . 4 ((𝐴 / 𝑁) ∈ ℝ → ((𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ ((𝑚 / 𝑁) ∈ ℕ ∧ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))))
6260, 61syl 17 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → ((𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ ((𝑚 / 𝑁) ∈ ℕ ∧ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))))
6348, 59, 62mpbir2and 713 . 2 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))))
6444nncnd 12280 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℂ)
6564adantrl 716 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑚 ∈ ℂ)
663nncnd 12280 . . . . 5 (𝜑𝑁 ∈ ℂ)
6766adantr 480 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑁 ∈ ℂ)
6812nncnd 12280 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℂ)
6968adantrr 717 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑛 ∈ ℂ)
703nnne0d 12314 . . . . 5 (𝜑𝑁 ≠ 0)
7170adantr 480 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑁 ≠ 0)
7265, 67, 69, 71divmuld 12063 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → ((𝑚 / 𝑁) = 𝑛 ↔ (𝑁 · 𝑛) = 𝑚))
73 eqcom 2742 . . 3 (𝑛 = (𝑚 / 𝑁) ↔ (𝑚 / 𝑁) = 𝑛)
74 eqcom 2742 . . 3 (𝑚 = (𝑁 · 𝑛) ↔ (𝑁 · 𝑛) = 𝑚)
7572, 73, 743bitr4g 314 . 2 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → (𝑛 = (𝑚 / 𝑁) ↔ 𝑚 = (𝑁 · 𝑛)))
761, 36, 63, 75f1o2d 7687 1 (𝜑𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  {crab 3433   class class class wbr 5148  cmpt 5231  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294   / cdiv 11918  cn 12264  cz 12611  ...cfz 13544  cfl 13827  cdvds 16287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fl 13829  df-dvds 16288
This theorem is referenced by:  dvdsflsumcom  27246  logfac2  27276
  Copyright terms: Public domain W3C validator