Step | Hyp | Ref
| Expression |
1 | | dvdsflf1o.f |
. 2
⊢ 𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛)) |
2 | | breq2 5074 |
. . 3
⊢ (𝑥 = (𝑁 · 𝑛) → (𝑁 ∥ 𝑥 ↔ 𝑁 ∥ (𝑁 · 𝑛))) |
3 | | dvdsflf1o.2 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
4 | | elfznn 13214 |
. . . . 5
⊢ (𝑛 ∈
(1...(⌊‘(𝐴 /
𝑁))) → 𝑛 ∈
ℕ) |
5 | | nnmulcl 11927 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑁 · 𝑛) ∈ ℕ) |
6 | 3, 4, 5 | syl2an 595 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ ℕ) |
7 | | dvdsflf1o.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
8 | 7, 3 | nndivred 11957 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 / 𝑁) ∈ ℝ) |
9 | | fznnfl 13510 |
. . . . . . . 8
⊢ ((𝐴 / 𝑁) ∈ ℝ → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑁)))) |
10 | 8, 9 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑁)))) |
11 | 10 | simplbda 499 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ≤ (𝐴 / 𝑁)) |
12 | 4 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℕ) |
13 | 12 | nnred 11918 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℝ) |
14 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝐴 ∈ ℝ) |
15 | 3 | nnred 11918 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℝ) |
16 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑁 ∈ ℝ) |
17 | 3 | nngt0d 11952 |
. . . . . . . 8
⊢ (𝜑 → 0 < 𝑁) |
18 | 17 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 0 < 𝑁) |
19 | | lemuldiv2 11786 |
. . . . . . 7
⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 <
𝑁)) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ 𝑛 ≤ (𝐴 / 𝑁))) |
20 | 13, 14, 16, 18, 19 | syl112anc 1372 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ 𝑛 ≤ (𝐴 / 𝑁))) |
21 | 11, 20 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ≤ 𝐴) |
22 | 3 | nnzd 12354 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
23 | | elfzelz 13185 |
. . . . . . 7
⊢ (𝑛 ∈
(1...(⌊‘(𝐴 /
𝑁))) → 𝑛 ∈
ℤ) |
24 | | zmulcl 12299 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 · 𝑛) ∈ ℤ) |
25 | 22, 23, 24 | syl2an 595 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ ℤ) |
26 | | flge 13453 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ (𝑁 · 𝑛) ∈ ℤ) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ (𝑁 · 𝑛) ≤ (⌊‘𝐴))) |
27 | 14, 25, 26 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ (𝑁 · 𝑛) ≤ (⌊‘𝐴))) |
28 | 21, 27 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ≤ (⌊‘𝐴)) |
29 | 7 | flcld 13446 |
. . . . . 6
⊢ (𝜑 → (⌊‘𝐴) ∈
ℤ) |
30 | 29 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (⌊‘𝐴) ∈ ℤ) |
31 | | fznn 13253 |
. . . . 5
⊢
((⌊‘𝐴)
∈ ℤ → ((𝑁
· 𝑛) ∈
(1...(⌊‘𝐴))
↔ ((𝑁 · 𝑛) ∈ ℕ ∧ (𝑁 · 𝑛) ≤ (⌊‘𝐴)))) |
32 | 30, 31 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)) ↔ ((𝑁 · 𝑛) ∈ ℕ ∧ (𝑁 · 𝑛) ≤ (⌊‘𝐴)))) |
33 | 6, 28, 32 | mpbir2and 709 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ (1...(⌊‘𝐴))) |
34 | | dvdsmul1 15915 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑛)) |
35 | 22, 23, 34 | syl2an 595 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑁 ∥ (𝑁 · 𝑛)) |
36 | 2, 33, 35 | elrabd 3619 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) |
37 | | breq2 5074 |
. . . . . . 7
⊢ (𝑥 = 𝑚 → (𝑁 ∥ 𝑥 ↔ 𝑁 ∥ 𝑚)) |
38 | 37 | elrab 3617 |
. . . . . 6
⊢ (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥} ↔ (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑁 ∥ 𝑚)) |
39 | 38 | simprbi 496 |
. . . . 5
⊢ (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥} → 𝑁 ∥ 𝑚) |
40 | 39 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → 𝑁 ∥ 𝑚) |
41 | | elrabi 3611 |
. . . . . . 7
⊢ (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥} → 𝑚 ∈ (1...(⌊‘𝐴))) |
42 | 41 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → 𝑚 ∈ (1...(⌊‘𝐴))) |
43 | | elfznn 13214 |
. . . . . 6
⊢ (𝑚 ∈
(1...(⌊‘𝐴))
→ 𝑚 ∈
ℕ) |
44 | 42, 43 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → 𝑚 ∈ ℕ) |
45 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → 𝑁 ∈ ℕ) |
46 | | nndivdvds 15900 |
. . . . 5
⊢ ((𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ 𝑚 ↔ (𝑚 / 𝑁) ∈ ℕ)) |
47 | 44, 45, 46 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → (𝑁 ∥ 𝑚 ↔ (𝑚 / 𝑁) ∈ ℕ)) |
48 | 40, 47 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → (𝑚 / 𝑁) ∈ ℕ) |
49 | | fznnfl 13510 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → (𝑚 ∈
(1...(⌊‘𝐴))
↔ (𝑚 ∈ ℕ
∧ 𝑚 ≤ 𝐴))) |
50 | 7, 49 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ 𝐴))) |
51 | 50 | simplbda 499 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ≤ 𝐴) |
52 | 41, 51 | sylan2 592 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → 𝑚 ≤ 𝐴) |
53 | 44 | nnred 11918 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → 𝑚 ∈ ℝ) |
54 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → 𝐴 ∈ ℝ) |
55 | 15 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → 𝑁 ∈ ℝ) |
56 | 17 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → 0 < 𝑁) |
57 | | lediv1 11770 |
. . . . 5
⊢ ((𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 <
𝑁)) → (𝑚 ≤ 𝐴 ↔ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))) |
58 | 53, 54, 55, 56, 57 | syl112anc 1372 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → (𝑚 ≤ 𝐴 ↔ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))) |
59 | 52, 58 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)) |
60 | 8 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → (𝐴 / 𝑁) ∈ ℝ) |
61 | | fznnfl 13510 |
. . . 4
⊢ ((𝐴 / 𝑁) ∈ ℝ → ((𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ ((𝑚 / 𝑁) ∈ ℕ ∧ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)))) |
62 | 60, 61 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → ((𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ ((𝑚 / 𝑁) ∈ ℕ ∧ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)))) |
63 | 48, 59, 62 | mpbir2and 709 |
. 2
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → (𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁)))) |
64 | 44 | nncnd 11919 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) → 𝑚 ∈ ℂ) |
65 | 64 | adantrl 712 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥})) → 𝑚 ∈ ℂ) |
66 | 3 | nncnd 11919 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℂ) |
67 | 66 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥})) → 𝑁 ∈ ℂ) |
68 | 12 | nncnd 11919 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℂ) |
69 | 68 | adantrr 713 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥})) → 𝑛 ∈ ℂ) |
70 | 3 | nnne0d 11953 |
. . . . 5
⊢ (𝜑 → 𝑁 ≠ 0) |
71 | 70 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥})) → 𝑁 ≠ 0) |
72 | 65, 67, 69, 71 | divmuld 11703 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥})) → ((𝑚 / 𝑁) = 𝑛 ↔ (𝑁 · 𝑛) = 𝑚)) |
73 | | eqcom 2745 |
. . 3
⊢ (𝑛 = (𝑚 / 𝑁) ↔ (𝑚 / 𝑁) = 𝑛) |
74 | | eqcom 2745 |
. . 3
⊢ (𝑚 = (𝑁 · 𝑛) ↔ (𝑁 · 𝑛) = 𝑚) |
75 | 72, 73, 74 | 3bitr4g 313 |
. 2
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥})) → (𝑛 = (𝑚 / 𝑁) ↔ 𝑚 = (𝑁 · 𝑛))) |
76 | 1, 36, 63, 75 | f1o2d 7501 |
1
⊢ (𝜑 → 𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁 ∥ 𝑥}) |