MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflf1o Structured version   Visualization version   GIF version

Theorem dvdsflf1o 25772
Description: A bijection from the numbers less than 𝑁 / 𝐴 to the multiples of 𝐴 less than 𝑁. Useful for some sum manipulations. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
dvdsflf1o.1 (𝜑𝐴 ∈ ℝ)
dvdsflf1o.2 (𝜑𝑁 ∈ ℕ)
dvdsflf1o.f 𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛))
Assertion
Ref Expression
dvdsflf1o (𝜑𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥,𝑛)

Proof of Theorem dvdsflf1o
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvdsflf1o.f . 2 𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛))
2 breq2 5034 . . 3 (𝑥 = (𝑁 · 𝑛) → (𝑁𝑥𝑁 ∥ (𝑁 · 𝑛)))
3 dvdsflf1o.2 . . . . 5 (𝜑𝑁 ∈ ℕ)
4 elfznn 12931 . . . . 5 (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) → 𝑛 ∈ ℕ)
5 nnmulcl 11649 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑁 · 𝑛) ∈ ℕ)
63, 4, 5syl2an 598 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ ℕ)
7 dvdsflf1o.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
87, 3nndivred 11679 . . . . . . . 8 (𝜑 → (𝐴 / 𝑁) ∈ ℝ)
9 fznnfl 13225 . . . . . . . 8 ((𝐴 / 𝑁) ∈ ℝ → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑁))))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑁))))
1110simplbda 503 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ≤ (𝐴 / 𝑁))
124adantl 485 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℕ)
1312nnred 11640 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℝ)
147adantr 484 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝐴 ∈ ℝ)
153nnred 11640 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
1615adantr 484 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑁 ∈ ℝ)
173nngt0d 11674 . . . . . . . 8 (𝜑 → 0 < 𝑁)
1817adantr 484 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 0 < 𝑁)
19 lemuldiv2 11510 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝑛) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑁)))
2013, 14, 16, 18, 19syl112anc 1371 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑁)))
2111, 20mpbird 260 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ≤ 𝐴)
223nnzd 12074 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
23 elfzelz 12902 . . . . . . 7 (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) → 𝑛 ∈ ℤ)
24 zmulcl 12019 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 · 𝑛) ∈ ℤ)
2522, 23, 24syl2an 598 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ ℤ)
26 flge 13170 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 · 𝑛) ∈ ℤ) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ (𝑁 · 𝑛) ≤ (⌊‘𝐴)))
2714, 25, 26syl2anc 587 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ (𝑁 · 𝑛) ≤ (⌊‘𝐴)))
2821, 27mpbid 235 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ≤ (⌊‘𝐴))
297flcld 13163 . . . . . 6 (𝜑 → (⌊‘𝐴) ∈ ℤ)
3029adantr 484 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (⌊‘𝐴) ∈ ℤ)
31 fznn 12970 . . . . 5 ((⌊‘𝐴) ∈ ℤ → ((𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)) ↔ ((𝑁 · 𝑛) ∈ ℕ ∧ (𝑁 · 𝑛) ≤ (⌊‘𝐴))))
3230, 31syl 17 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)) ↔ ((𝑁 · 𝑛) ∈ ℕ ∧ (𝑁 · 𝑛) ≤ (⌊‘𝐴))))
336, 28, 32mpbir2and 712 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)))
34 dvdsmul1 15623 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑛))
3522, 23, 34syl2an 598 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑁 ∥ (𝑁 · 𝑛))
362, 33, 35elrabd 3630 . 2 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
37 breq2 5034 . . . . . . 7 (𝑥 = 𝑚 → (𝑁𝑥𝑁𝑚))
3837elrab 3628 . . . . . 6 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} ↔ (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑁𝑚))
3938simprbi 500 . . . . 5 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} → 𝑁𝑚)
4039adantl 485 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁𝑚)
41 elrabi 3623 . . . . . . 7 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} → 𝑚 ∈ (1...(⌊‘𝐴)))
4241adantl 485 . . . . . 6 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ (1...(⌊‘𝐴)))
43 elfznn 12931 . . . . . 6 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
4442, 43syl 17 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℕ)
453adantr 484 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁 ∈ ℕ)
46 nndivdvds 15608 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑚 ↔ (𝑚 / 𝑁) ∈ ℕ))
4744, 45, 46syl2anc 587 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑁𝑚 ↔ (𝑚 / 𝑁) ∈ ℕ))
4840, 47mpbid 235 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ∈ ℕ)
49 fznnfl 13225 . . . . . . 7 (𝐴 ∈ ℝ → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
507, 49syl 17 . . . . . 6 (𝜑 → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
5150simplbda 503 . . . . 5 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚𝐴)
5241, 51sylan2 595 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚𝐴)
5344nnred 11640 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℝ)
547adantr 484 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝐴 ∈ ℝ)
5515adantr 484 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁 ∈ ℝ)
5617adantr 484 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 0 < 𝑁)
57 lediv1 11494 . . . . 5 ((𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑚𝐴 ↔ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)))
5853, 54, 55, 56, 57syl112anc 1371 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚𝐴 ↔ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)))
5952, 58mpbid 235 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))
608adantr 484 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝐴 / 𝑁) ∈ ℝ)
61 fznnfl 13225 . . . 4 ((𝐴 / 𝑁) ∈ ℝ → ((𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ ((𝑚 / 𝑁) ∈ ℕ ∧ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))))
6260, 61syl 17 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → ((𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ ((𝑚 / 𝑁) ∈ ℕ ∧ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))))
6348, 59, 62mpbir2and 712 . 2 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))))
6444nncnd 11641 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℂ)
6564adantrl 715 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑚 ∈ ℂ)
663nncnd 11641 . . . . 5 (𝜑𝑁 ∈ ℂ)
6766adantr 484 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑁 ∈ ℂ)
6812nncnd 11641 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℂ)
6968adantrr 716 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑛 ∈ ℂ)
703nnne0d 11675 . . . . 5 (𝜑𝑁 ≠ 0)
7170adantr 484 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑁 ≠ 0)
7265, 67, 69, 71divmuld 11427 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → ((𝑚 / 𝑁) = 𝑛 ↔ (𝑁 · 𝑛) = 𝑚))
73 eqcom 2805 . . 3 (𝑛 = (𝑚 / 𝑁) ↔ (𝑚 / 𝑁) = 𝑛)
74 eqcom 2805 . . 3 (𝑚 = (𝑁 · 𝑛) ↔ (𝑁 · 𝑛) = 𝑚)
7572, 73, 743bitr4g 317 . 2 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → (𝑛 = (𝑚 / 𝑁) ↔ 𝑚 = (𝑁 · 𝑛)))
761, 36, 63, 75f1o2d 7379 1 (𝜑𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  {crab 3110   class class class wbr 5030  cmpt 5110  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531   < clt 10664  cle 10665   / cdiv 11286  cn 11625  cz 11969  ...cfz 12885  cfl 13155  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fl 13157  df-dvds 15600
This theorem is referenced by:  dvdsflsumcom  25773  logfac2  25801
  Copyright terms: Public domain W3C validator