MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflf1o Structured version   Visualization version   GIF version

Theorem dvdsflf1o 27125
Description: A bijection from the numbers less than 𝑁 / 𝐴 to the multiples of 𝐴 less than 𝑁. Useful for some sum manipulations. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
dvdsflf1o.1 (𝜑𝐴 ∈ ℝ)
dvdsflf1o.2 (𝜑𝑁 ∈ ℕ)
dvdsflf1o.f 𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛))
Assertion
Ref Expression
dvdsflf1o (𝜑𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥,𝑛)

Proof of Theorem dvdsflf1o
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvdsflf1o.f . 2 𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛))
2 breq2 5097 . . 3 (𝑥 = (𝑁 · 𝑛) → (𝑁𝑥𝑁 ∥ (𝑁 · 𝑛)))
3 dvdsflf1o.2 . . . . 5 (𝜑𝑁 ∈ ℕ)
4 elfznn 13455 . . . . 5 (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) → 𝑛 ∈ ℕ)
5 nnmulcl 12156 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑁 · 𝑛) ∈ ℕ)
63, 4, 5syl2an 596 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ ℕ)
7 dvdsflf1o.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
87, 3nndivred 12186 . . . . . . . 8 (𝜑 → (𝐴 / 𝑁) ∈ ℝ)
9 fznnfl 13768 . . . . . . . 8 ((𝐴 / 𝑁) ∈ ℝ → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑁))))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑁))))
1110simplbda 499 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ≤ (𝐴 / 𝑁))
124adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℕ)
1312nnred 12147 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℝ)
147adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝐴 ∈ ℝ)
153nnred 12147 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
1615adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑁 ∈ ℝ)
173nngt0d 12181 . . . . . . . 8 (𝜑 → 0 < 𝑁)
1817adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 0 < 𝑁)
19 lemuldiv2 12010 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝑛) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑁)))
2013, 14, 16, 18, 19syl112anc 1376 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑁)))
2111, 20mpbird 257 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ≤ 𝐴)
223nnzd 12501 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
23 elfzelz 13426 . . . . . . 7 (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) → 𝑛 ∈ ℤ)
24 zmulcl 12527 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 · 𝑛) ∈ ℤ)
2522, 23, 24syl2an 596 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ ℤ)
26 flge 13711 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 · 𝑛) ∈ ℤ) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ (𝑁 · 𝑛) ≤ (⌊‘𝐴)))
2714, 25, 26syl2anc 584 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ (𝑁 · 𝑛) ≤ (⌊‘𝐴)))
2821, 27mpbid 232 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ≤ (⌊‘𝐴))
297flcld 13704 . . . . . 6 (𝜑 → (⌊‘𝐴) ∈ ℤ)
3029adantr 480 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (⌊‘𝐴) ∈ ℤ)
31 fznn 13494 . . . . 5 ((⌊‘𝐴) ∈ ℤ → ((𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)) ↔ ((𝑁 · 𝑛) ∈ ℕ ∧ (𝑁 · 𝑛) ≤ (⌊‘𝐴))))
3230, 31syl 17 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)) ↔ ((𝑁 · 𝑛) ∈ ℕ ∧ (𝑁 · 𝑛) ≤ (⌊‘𝐴))))
336, 28, 32mpbir2and 713 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)))
34 dvdsmul1 16190 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑛))
3522, 23, 34syl2an 596 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑁 ∥ (𝑁 · 𝑛))
362, 33, 35elrabd 3645 . 2 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
37 breq2 5097 . . . . . . 7 (𝑥 = 𝑚 → (𝑁𝑥𝑁𝑚))
3837elrab 3643 . . . . . 6 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} ↔ (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑁𝑚))
3938simprbi 496 . . . . 5 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} → 𝑁𝑚)
4039adantl 481 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁𝑚)
41 elrabi 3639 . . . . . . 7 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} → 𝑚 ∈ (1...(⌊‘𝐴)))
4241adantl 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ (1...(⌊‘𝐴)))
43 elfznn 13455 . . . . . 6 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
4442, 43syl 17 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℕ)
453adantr 480 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁 ∈ ℕ)
46 nndivdvds 16174 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑚 ↔ (𝑚 / 𝑁) ∈ ℕ))
4744, 45, 46syl2anc 584 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑁𝑚 ↔ (𝑚 / 𝑁) ∈ ℕ))
4840, 47mpbid 232 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ∈ ℕ)
49 fznnfl 13768 . . . . . . 7 (𝐴 ∈ ℝ → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
507, 49syl 17 . . . . . 6 (𝜑 → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
5150simplbda 499 . . . . 5 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚𝐴)
5241, 51sylan2 593 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚𝐴)
5344nnred 12147 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℝ)
547adantr 480 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝐴 ∈ ℝ)
5515adantr 480 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁 ∈ ℝ)
5617adantr 480 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 0 < 𝑁)
57 lediv1 11994 . . . . 5 ((𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑚𝐴 ↔ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)))
5853, 54, 55, 56, 57syl112anc 1376 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚𝐴 ↔ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)))
5952, 58mpbid 232 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))
608adantr 480 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝐴 / 𝑁) ∈ ℝ)
61 fznnfl 13768 . . . 4 ((𝐴 / 𝑁) ∈ ℝ → ((𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ ((𝑚 / 𝑁) ∈ ℕ ∧ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))))
6260, 61syl 17 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → ((𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ ((𝑚 / 𝑁) ∈ ℕ ∧ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))))
6348, 59, 62mpbir2and 713 . 2 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))))
6444nncnd 12148 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℂ)
6564adantrl 716 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑚 ∈ ℂ)
663nncnd 12148 . . . . 5 (𝜑𝑁 ∈ ℂ)
6766adantr 480 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑁 ∈ ℂ)
6812nncnd 12148 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℂ)
6968adantrr 717 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑛 ∈ ℂ)
703nnne0d 12182 . . . . 5 (𝜑𝑁 ≠ 0)
7170adantr 480 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑁 ≠ 0)
7265, 67, 69, 71divmuld 11926 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → ((𝑚 / 𝑁) = 𝑛 ↔ (𝑁 · 𝑛) = 𝑚))
73 eqcom 2740 . . 3 (𝑛 = (𝑚 / 𝑁) ↔ (𝑚 / 𝑁) = 𝑛)
74 eqcom 2740 . . 3 (𝑚 = (𝑁 · 𝑛) ↔ (𝑁 · 𝑛) = 𝑚)
7572, 73, 743bitr4g 314 . 2 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → (𝑛 = (𝑚 / 𝑁) ↔ 𝑚 = (𝑁 · 𝑛)))
761, 36, 63, 75f1o2d 7606 1 (𝜑𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  {crab 3396   class class class wbr 5093  cmpt 5174  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013  1c1 11014   · cmul 11018   < clt 11153  cle 11154   / cdiv 11781  cn 12132  cz 12475  ...cfz 13409  cfl 13696  cdvds 16165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fl 13698  df-dvds 16166
This theorem is referenced by:  dvdsflsumcom  27126  logfac2  27156
  Copyright terms: Public domain W3C validator