MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflf1o Structured version   Visualization version   GIF version

Theorem dvdsflf1o 26241
Description: A bijection from the numbers less than 𝑁 / 𝐴 to the multiples of 𝐴 less than 𝑁. Useful for some sum manipulations. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
dvdsflf1o.1 (𝜑𝐴 ∈ ℝ)
dvdsflf1o.2 (𝜑𝑁 ∈ ℕ)
dvdsflf1o.f 𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛))
Assertion
Ref Expression
dvdsflf1o (𝜑𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑁,𝑥   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥,𝑛)

Proof of Theorem dvdsflf1o
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvdsflf1o.f . 2 𝐹 = (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↦ (𝑁 · 𝑛))
2 breq2 5074 . . 3 (𝑥 = (𝑁 · 𝑛) → (𝑁𝑥𝑁 ∥ (𝑁 · 𝑛)))
3 dvdsflf1o.2 . . . . 5 (𝜑𝑁 ∈ ℕ)
4 elfznn 13214 . . . . 5 (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) → 𝑛 ∈ ℕ)
5 nnmulcl 11927 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑁 · 𝑛) ∈ ℕ)
63, 4, 5syl2an 595 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ ℕ)
7 dvdsflf1o.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
87, 3nndivred 11957 . . . . . . . 8 (𝜑 → (𝐴 / 𝑁) ∈ ℝ)
9 fznnfl 13510 . . . . . . . 8 ((𝐴 / 𝑁) ∈ ℝ → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑁))))
108, 9syl 17 . . . . . . 7 (𝜑 → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑁))))
1110simplbda 499 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ≤ (𝐴 / 𝑁))
124adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℕ)
1312nnred 11918 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℝ)
147adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝐴 ∈ ℝ)
153nnred 11918 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
1615adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑁 ∈ ℝ)
173nngt0d 11952 . . . . . . . 8 (𝜑 → 0 < 𝑁)
1817adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 0 < 𝑁)
19 lemuldiv2 11786 . . . . . . 7 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑁 · 𝑛) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑁)))
2013, 14, 16, 18, 19syl112anc 1372 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑁)))
2111, 20mpbird 256 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ≤ 𝐴)
223nnzd 12354 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
23 elfzelz 13185 . . . . . . 7 (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) → 𝑛 ∈ ℤ)
24 zmulcl 12299 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑁 · 𝑛) ∈ ℤ)
2522, 23, 24syl2an 595 . . . . . 6 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ ℤ)
26 flge 13453 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 · 𝑛) ∈ ℤ) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ (𝑁 · 𝑛) ≤ (⌊‘𝐴)))
2714, 25, 26syl2anc 583 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ≤ 𝐴 ↔ (𝑁 · 𝑛) ≤ (⌊‘𝐴)))
2821, 27mpbid 231 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ≤ (⌊‘𝐴))
297flcld 13446 . . . . . 6 (𝜑 → (⌊‘𝐴) ∈ ℤ)
3029adantr 480 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (⌊‘𝐴) ∈ ℤ)
31 fznn 13253 . . . . 5 ((⌊‘𝐴) ∈ ℤ → ((𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)) ↔ ((𝑁 · 𝑛) ∈ ℕ ∧ (𝑁 · 𝑛) ≤ (⌊‘𝐴))))
3230, 31syl 17 . . . 4 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → ((𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)) ↔ ((𝑁 · 𝑛) ∈ ℕ ∧ (𝑁 · 𝑛) ≤ (⌊‘𝐴))))
336, 28, 32mpbir2and 709 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ (1...(⌊‘𝐴)))
34 dvdsmul1 15915 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑛))
3522, 23, 34syl2an 595 . . 3 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑁 ∥ (𝑁 · 𝑛))
362, 33, 35elrabd 3619 . 2 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → (𝑁 · 𝑛) ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
37 breq2 5074 . . . . . . 7 (𝑥 = 𝑚 → (𝑁𝑥𝑁𝑚))
3837elrab 3617 . . . . . 6 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} ↔ (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑁𝑚))
3938simprbi 496 . . . . 5 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} → 𝑁𝑚)
4039adantl 481 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁𝑚)
41 elrabi 3611 . . . . . . 7 (𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥} → 𝑚 ∈ (1...(⌊‘𝐴)))
4241adantl 481 . . . . . 6 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ (1...(⌊‘𝐴)))
43 elfznn 13214 . . . . . 6 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
4442, 43syl 17 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℕ)
453adantr 480 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁 ∈ ℕ)
46 nndivdvds 15900 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑚 ↔ (𝑚 / 𝑁) ∈ ℕ))
4744, 45, 46syl2anc 583 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑁𝑚 ↔ (𝑚 / 𝑁) ∈ ℕ))
4840, 47mpbid 231 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ∈ ℕ)
49 fznnfl 13510 . . . . . . 7 (𝐴 ∈ ℝ → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
507, 49syl 17 . . . . . 6 (𝜑 → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
5150simplbda 499 . . . . 5 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚𝐴)
5241, 51sylan2 592 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚𝐴)
5344nnred 11918 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℝ)
547adantr 480 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝐴 ∈ ℝ)
5515adantr 480 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑁 ∈ ℝ)
5617adantr 480 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 0 < 𝑁)
57 lediv1 11770 . . . . 5 ((𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑚𝐴 ↔ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)))
5853, 54, 55, 56, 57syl112anc 1372 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚𝐴 ↔ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁)))
5952, 58mpbid 231 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))
608adantr 480 . . . 4 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝐴 / 𝑁) ∈ ℝ)
61 fznnfl 13510 . . . 4 ((𝐴 / 𝑁) ∈ ℝ → ((𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ ((𝑚 / 𝑁) ∈ ℕ ∧ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))))
6260, 61syl 17 . . 3 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → ((𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))) ↔ ((𝑚 / 𝑁) ∈ ℕ ∧ (𝑚 / 𝑁) ≤ (𝐴 / 𝑁))))
6348, 59, 62mpbir2and 709 . 2 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → (𝑚 / 𝑁) ∈ (1...(⌊‘(𝐴 / 𝑁))))
6444nncnd 11919 . . . . 5 ((𝜑𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥}) → 𝑚 ∈ ℂ)
6564adantrl 712 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑚 ∈ ℂ)
663nncnd 11919 . . . . 5 (𝜑𝑁 ∈ ℂ)
6766adantr 480 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑁 ∈ ℂ)
6812nncnd 11919 . . . . 5 ((𝜑𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁)))) → 𝑛 ∈ ℂ)
6968adantrr 713 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑛 ∈ ℂ)
703nnne0d 11953 . . . . 5 (𝜑𝑁 ≠ 0)
7170adantr 480 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → 𝑁 ≠ 0)
7265, 67, 69, 71divmuld 11703 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → ((𝑚 / 𝑁) = 𝑛 ↔ (𝑁 · 𝑛) = 𝑚))
73 eqcom 2745 . . 3 (𝑛 = (𝑚 / 𝑁) ↔ (𝑚 / 𝑁) = 𝑛)
74 eqcom 2745 . . 3 (𝑚 = (𝑁 · 𝑛) ↔ (𝑁 · 𝑛) = 𝑚)
7572, 73, 743bitr4g 313 . 2 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑁))) ∧ 𝑚 ∈ {𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})) → (𝑛 = (𝑚 / 𝑁) ↔ 𝑚 = (𝑁 · 𝑛)))
761, 36, 63, 75f1o2d 7501 1 (𝜑𝐹:(1...(⌊‘(𝐴 / 𝑁)))–1-1-onto→{𝑥 ∈ (1...(⌊‘𝐴)) ∣ 𝑁𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067   class class class wbr 5070  cmpt 5153  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  cn 11903  cz 12249  ...cfz 13168  cfl 13438  cdvds 15891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fl 13440  df-dvds 15892
This theorem is referenced by:  dvdsflsumcom  26242  logfac2  26270
  Copyright terms: Public domain W3C validator