Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢ (𝑥 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑥)) = (𝑥 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑥)) |
2 | | simpll 763 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ 𝑆) → 𝐼 ∈ 𝑉) |
3 | | simplr 765 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ 𝑆) → 𝐹 ∈ 𝐷) |
4 | | simpr 484 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
5 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → (𝑦 ∘r ≤ 𝐹 ↔ 𝑥 ∘r ≤ 𝐹)) |
6 | | psrbagconf1o.s |
. . . . . . . 8
⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} |
7 | 5, 6 | elrab2 3620 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑆 ↔ (𝑥 ∈ 𝐷 ∧ 𝑥 ∘r ≤ 𝐹)) |
8 | 4, 7 | sylib 217 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ 𝑆) → (𝑥 ∈ 𝐷 ∧ 𝑥 ∘r ≤ 𝐹)) |
9 | 8 | simpld 494 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐷) |
10 | | psrbag.d |
. . . . . 6
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
11 | 10 | psrbagfOLD 21032 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐷) → 𝑥:𝐼⟶ℕ0) |
12 | 2, 9, 11 | syl2anc 583 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ 𝑆) → 𝑥:𝐼⟶ℕ0) |
13 | 8 | simprd 495 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∘r ≤ 𝐹) |
14 | 10 | psrbagconOLD 21044 |
. . . 4
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∈ 𝐷 ∧ 𝑥:𝐼⟶ℕ0 ∧ 𝑥 ∘r ≤ 𝐹)) → ((𝐹 ∘f − 𝑥) ∈ 𝐷 ∧ (𝐹 ∘f − 𝑥) ∘r ≤ 𝐹)) |
15 | 2, 3, 12, 13, 14 | syl13anc 1370 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ 𝑆) → ((𝐹 ∘f − 𝑥) ∈ 𝐷 ∧ (𝐹 ∘f − 𝑥) ∘r ≤ 𝐹)) |
16 | | breq1 5073 |
. . . 4
⊢ (𝑦 = (𝐹 ∘f − 𝑥) → (𝑦 ∘r ≤ 𝐹 ↔ (𝐹 ∘f − 𝑥) ∘r ≤ 𝐹)) |
17 | 16, 6 | elrab2 3620 |
. . 3
⊢ ((𝐹 ∘f −
𝑥) ∈ 𝑆 ↔ ((𝐹 ∘f − 𝑥) ∈ 𝐷 ∧ (𝐹 ∘f − 𝑥) ∘r ≤ 𝐹)) |
18 | 15, 17 | sylibr 233 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑥 ∈ 𝑆) → (𝐹 ∘f − 𝑥) ∈ 𝑆) |
19 | 18 | ralrimiva 3107 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → ∀𝑥 ∈ 𝑆 (𝐹 ∘f − 𝑥) ∈ 𝑆) |
20 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝐹 ∘f − 𝑥) = (𝐹 ∘f − 𝑧)) |
21 | 20 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = 𝑧 → ((𝐹 ∘f − 𝑥) ∈ 𝑆 ↔ (𝐹 ∘f − 𝑧) ∈ 𝑆)) |
22 | 21 | rspccva 3551 |
. . 3
⊢
((∀𝑥 ∈
𝑆 (𝐹 ∘f − 𝑥) ∈ 𝑆 ∧ 𝑧 ∈ 𝑆) → (𝐹 ∘f − 𝑧) ∈ 𝑆) |
23 | 19, 22 | sylan 579 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ 𝑧 ∈ 𝑆) → (𝐹 ∘f − 𝑧) ∈ 𝑆) |
24 | 10 | psrbagfOLD 21032 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → 𝐹:𝐼⟶ℕ0) |
25 | 24 | adantr 480 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝐹:𝐼⟶ℕ0) |
26 | 25 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (𝐹‘𝑛) ∈
ℕ0) |
27 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝐼 ∈ 𝑉) |
28 | 6 | ssrab3 4011 |
. . . . . . . . . 10
⊢ 𝑆 ⊆ 𝐷 |
29 | | simprr 769 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ 𝑆) |
30 | 28, 29 | sselid 3915 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 ∈ 𝐷) |
31 | 10 | psrbagfOLD 21032 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑧 ∈ 𝐷) → 𝑧:𝐼⟶ℕ0) |
32 | 27, 30, 31 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧:𝐼⟶ℕ0) |
33 | 32 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (𝑧‘𝑛) ∈
ℕ0) |
34 | 12 | adantrr 713 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑥:𝐼⟶ℕ0) |
35 | 34 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (𝑥‘𝑛) ∈
ℕ0) |
36 | | nn0cn 12173 |
. . . . . . . 8
⊢ ((𝐹‘𝑛) ∈ ℕ0 → (𝐹‘𝑛) ∈ ℂ) |
37 | | nn0cn 12173 |
. . . . . . . 8
⊢ ((𝑧‘𝑛) ∈ ℕ0 → (𝑧‘𝑛) ∈ ℂ) |
38 | | nn0cn 12173 |
. . . . . . . 8
⊢ ((𝑥‘𝑛) ∈ ℕ0 → (𝑥‘𝑛) ∈ ℂ) |
39 | | subsub23 11156 |
. . . . . . . 8
⊢ (((𝐹‘𝑛) ∈ ℂ ∧ (𝑧‘𝑛) ∈ ℂ ∧ (𝑥‘𝑛) ∈ ℂ) → (((𝐹‘𝑛) − (𝑧‘𝑛)) = (𝑥‘𝑛) ↔ ((𝐹‘𝑛) − (𝑥‘𝑛)) = (𝑧‘𝑛))) |
40 | 36, 37, 38, 39 | syl3an 1158 |
. . . . . . 7
⊢ (((𝐹‘𝑛) ∈ ℕ0 ∧ (𝑧‘𝑛) ∈ ℕ0 ∧ (𝑥‘𝑛) ∈ ℕ0) → (((𝐹‘𝑛) − (𝑧‘𝑛)) = (𝑥‘𝑛) ↔ ((𝐹‘𝑛) − (𝑥‘𝑛)) = (𝑧‘𝑛))) |
41 | 26, 33, 35, 40 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (((𝐹‘𝑛) − (𝑧‘𝑛)) = (𝑥‘𝑛) ↔ ((𝐹‘𝑛) − (𝑥‘𝑛)) = (𝑧‘𝑛))) |
42 | | eqcom 2745 |
. . . . . 6
⊢ ((𝑥‘𝑛) = ((𝐹‘𝑛) − (𝑧‘𝑛)) ↔ ((𝐹‘𝑛) − (𝑧‘𝑛)) = (𝑥‘𝑛)) |
43 | | eqcom 2745 |
. . . . . 6
⊢ ((𝑧‘𝑛) = ((𝐹‘𝑛) − (𝑥‘𝑛)) ↔ ((𝐹‘𝑛) − (𝑥‘𝑛)) = (𝑧‘𝑛)) |
44 | 41, 42, 43 | 3bitr4g 313 |
. . . . 5
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → ((𝑥‘𝑛) = ((𝐹‘𝑛) − (𝑧‘𝑛)) ↔ (𝑧‘𝑛) = ((𝐹‘𝑛) − (𝑥‘𝑛)))) |
45 | 25 | ffnd 6585 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝐹 Fn 𝐼) |
46 | 32 | ffnd 6585 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 Fn 𝐼) |
47 | | inidm 4149 |
. . . . . . 7
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
48 | | eqidd 2739 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (𝐹‘𝑛) = (𝐹‘𝑛)) |
49 | | eqidd 2739 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (𝑧‘𝑛) = (𝑧‘𝑛)) |
50 | 45, 46, 27, 27, 47, 48, 49 | ofval 7522 |
. . . . . 6
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → ((𝐹 ∘f − 𝑧)‘𝑛) = ((𝐹‘𝑛) − (𝑧‘𝑛))) |
51 | 50 | eqeq2d 2749 |
. . . . 5
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → ((𝑥‘𝑛) = ((𝐹 ∘f − 𝑧)‘𝑛) ↔ (𝑥‘𝑛) = ((𝐹‘𝑛) − (𝑧‘𝑛)))) |
52 | 34 | ffnd 6585 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑥 Fn 𝐼) |
53 | | eqidd 2739 |
. . . . . . 7
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (𝑥‘𝑛) = (𝑥‘𝑛)) |
54 | 45, 52, 27, 27, 47, 48, 53 | ofval 7522 |
. . . . . 6
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → ((𝐹 ∘f − 𝑥)‘𝑛) = ((𝐹‘𝑛) − (𝑥‘𝑛))) |
55 | 54 | eqeq2d 2749 |
. . . . 5
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → ((𝑧‘𝑛) = ((𝐹 ∘f − 𝑥)‘𝑛) ↔ (𝑧‘𝑛) = ((𝐹‘𝑛) − (𝑥‘𝑛)))) |
56 | 44, 51, 55 | 3bitr4d 310 |
. . . 4
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → ((𝑥‘𝑛) = ((𝐹 ∘f − 𝑧)‘𝑛) ↔ (𝑧‘𝑛) = ((𝐹 ∘f − 𝑥)‘𝑛))) |
57 | 56 | ralbidva 3119 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (∀𝑛 ∈ 𝐼 (𝑥‘𝑛) = ((𝐹 ∘f − 𝑧)‘𝑛) ↔ ∀𝑛 ∈ 𝐼 (𝑧‘𝑛) = ((𝐹 ∘f − 𝑥)‘𝑛))) |
58 | 23 | adantrl 712 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑧) ∈ 𝑆) |
59 | 28, 58 | sselid 3915 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑧) ∈ 𝐷) |
60 | 10 | psrbagfOLD 21032 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∘f − 𝑧) ∈ 𝐷) → (𝐹 ∘f − 𝑧):𝐼⟶ℕ0) |
61 | 27, 59, 60 | syl2anc 583 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑧):𝐼⟶ℕ0) |
62 | 61 | ffnd 6585 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑧) Fn 𝐼) |
63 | | eqfnfv 6891 |
. . . 4
⊢ ((𝑥 Fn 𝐼 ∧ (𝐹 ∘f − 𝑧) Fn 𝐼) → (𝑥 = (𝐹 ∘f − 𝑧) ↔ ∀𝑛 ∈ 𝐼 (𝑥‘𝑛) = ((𝐹 ∘f − 𝑧)‘𝑛))) |
64 | 52, 62, 63 | syl2anc 583 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥 = (𝐹 ∘f − 𝑧) ↔ ∀𝑛 ∈ 𝐼 (𝑥‘𝑛) = ((𝐹 ∘f − 𝑧)‘𝑛))) |
65 | 18 | adantrr 713 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑥) ∈ 𝑆) |
66 | 28, 65 | sselid 3915 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑥) ∈ 𝐷) |
67 | 10 | psrbagfOLD 21032 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ (𝐹 ∘f − 𝑥) ∈ 𝐷) → (𝐹 ∘f − 𝑥):𝐼⟶ℕ0) |
68 | 27, 66, 67 | syl2anc 583 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑥):𝐼⟶ℕ0) |
69 | 68 | ffnd 6585 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑥) Fn 𝐼) |
70 | | eqfnfv 6891 |
. . . 4
⊢ ((𝑧 Fn 𝐼 ∧ (𝐹 ∘f − 𝑥) Fn 𝐼) → (𝑧 = (𝐹 ∘f − 𝑥) ↔ ∀𝑛 ∈ 𝐼 (𝑧‘𝑛) = ((𝐹 ∘f − 𝑥)‘𝑛))) |
71 | 46, 69, 70 | syl2anc 583 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑧 = (𝐹 ∘f − 𝑥) ↔ ∀𝑛 ∈ 𝐼 (𝑧‘𝑛) = ((𝐹 ∘f − 𝑥)‘𝑛))) |
72 | 57, 64, 71 | 3bitr4d 310 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥 = (𝐹 ∘f − 𝑧) ↔ 𝑧 = (𝐹 ∘f − 𝑥))) |
73 | 1, 18, 23, 72 | f1o2d 7501 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝐷) → (𝑥 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑥)):𝑆–1-1-onto→𝑆) |