Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconf1oOLD Structured version   Visualization version   GIF version

Theorem psrbagconf1oOLD 20699
 Description: Obsolete version of psrbagconf1o 20698 as of 6-Aug-2024. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
Assertion
Ref Expression
psrbagconf1oOLD ((𝐼𝑉𝐹𝐷) → (𝑥𝑆 ↦ (𝐹f𝑥)):𝑆1-1-onto𝑆)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐹   𝑥,𝑉,𝑦   𝑓,𝐼,𝑥,𝑦   𝑥,𝑆   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝑉(𝑓)

Proof of Theorem psrbagconf1oOLD
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . 2 (𝑥𝑆 ↦ (𝐹f𝑥)) = (𝑥𝑆 ↦ (𝐹f𝑥))
2 simpll 766 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝐼𝑉)
3 simplr 768 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝐹𝐷)
4 simpr 488 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝑥𝑆)
5 breq1 5035 . . . . . . . 8 (𝑦 = 𝑥 → (𝑦r𝐹𝑥r𝐹))
6 psrbagconf1o.s . . . . . . . 8 𝑆 = {𝑦𝐷𝑦r𝐹}
75, 6elrab2 3605 . . . . . . 7 (𝑥𝑆 ↔ (𝑥𝐷𝑥r𝐹))
84, 7sylib 221 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → (𝑥𝐷𝑥r𝐹))
98simpld 498 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝑥𝐷)
10 psrbag.d . . . . . 6 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1110psrbagfOLD 20681 . . . . 5 ((𝐼𝑉𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
122, 9, 11syl2anc 587 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝑥:𝐼⟶ℕ0)
138simprd 499 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → 𝑥r𝐹)
1410psrbagconOLD 20693 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝑥:𝐼⟶ℕ0𝑥r𝐹)) → ((𝐹f𝑥) ∈ 𝐷 ∧ (𝐹f𝑥) ∘r𝐹))
152, 3, 12, 13, 14syl13anc 1369 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → ((𝐹f𝑥) ∈ 𝐷 ∧ (𝐹f𝑥) ∘r𝐹))
16 breq1 5035 . . . 4 (𝑦 = (𝐹f𝑥) → (𝑦r𝐹 ↔ (𝐹f𝑥) ∘r𝐹))
1716, 6elrab2 3605 . . 3 ((𝐹f𝑥) ∈ 𝑆 ↔ ((𝐹f𝑥) ∈ 𝐷 ∧ (𝐹f𝑥) ∘r𝐹))
1815, 17sylibr 237 . 2 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝑆) → (𝐹f𝑥) ∈ 𝑆)
1918ralrimiva 3113 . . 3 ((𝐼𝑉𝐹𝐷) → ∀𝑥𝑆 (𝐹f𝑥) ∈ 𝑆)
20 oveq2 7158 . . . . 5 (𝑥 = 𝑧 → (𝐹f𝑥) = (𝐹f𝑧))
2120eleq1d 2836 . . . 4 (𝑥 = 𝑧 → ((𝐹f𝑥) ∈ 𝑆 ↔ (𝐹f𝑧) ∈ 𝑆))
2221rspccva 3540 . . 3 ((∀𝑥𝑆 (𝐹f𝑥) ∈ 𝑆𝑧𝑆) → (𝐹f𝑧) ∈ 𝑆)
2319, 22sylan 583 . 2 (((𝐼𝑉𝐹𝐷) ∧ 𝑧𝑆) → (𝐹f𝑧) ∈ 𝑆)
2410psrbagfOLD 20681 . . . . . . . . 9 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
2524adantr 484 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝐹:𝐼⟶ℕ0)
2625ffvelrnda 6842 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) ∈ ℕ0)
27 simpll 766 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝐼𝑉)
286ssrab3 3986 . . . . . . . . . 10 𝑆𝐷
29 simprr 772 . . . . . . . . . 10 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝑆)
3028, 29sseldi 3890 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧𝐷)
3110psrbagfOLD 20681 . . . . . . . . 9 ((𝐼𝑉𝑧𝐷) → 𝑧:𝐼⟶ℕ0)
3227, 30, 31syl2anc 587 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧:𝐼⟶ℕ0)
3332ffvelrnda 6842 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) ∈ ℕ0)
3412adantrr 716 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥:𝐼⟶ℕ0)
3534ffvelrnda 6842 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) ∈ ℕ0)
36 nn0cn 11944 . . . . . . . 8 ((𝐹𝑛) ∈ ℕ0 → (𝐹𝑛) ∈ ℂ)
37 nn0cn 11944 . . . . . . . 8 ((𝑧𝑛) ∈ ℕ0 → (𝑧𝑛) ∈ ℂ)
38 nn0cn 11944 . . . . . . . 8 ((𝑥𝑛) ∈ ℕ0 → (𝑥𝑛) ∈ ℂ)
39 subsub23 10929 . . . . . . . 8 (((𝐹𝑛) ∈ ℂ ∧ (𝑧𝑛) ∈ ℂ ∧ (𝑥𝑛) ∈ ℂ) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
4036, 37, 38, 39syl3an 1157 . . . . . . 7 (((𝐹𝑛) ∈ ℕ0 ∧ (𝑧𝑛) ∈ ℕ0 ∧ (𝑥𝑛) ∈ ℕ0) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
4126, 33, 35, 40syl3anc 1368 . . . . . 6 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
42 eqcom 2765 . . . . . 6 ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ ((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛))
43 eqcom 2765 . . . . . 6 ((𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛)) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛))
4441, 42, 433bitr4g 317 . . . . 5 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
4525ffnd 6499 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝐹 Fn 𝐼)
4632ffnd 6499 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑧 Fn 𝐼)
47 inidm 4123 . . . . . . 7 (𝐼𝐼) = 𝐼
48 eqidd 2759 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) = (𝐹𝑛))
49 eqidd 2759 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) = (𝑧𝑛))
5045, 46, 27, 27, 47, 48, 49ofval 7415 . . . . . 6 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹f𝑧)‘𝑛) = ((𝐹𝑛) − (𝑧𝑛)))
5150eqeq2d 2769 . . . . 5 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ (𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛))))
5234ffnd 6499 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → 𝑥 Fn 𝐼)
53 eqidd 2759 . . . . . . 7 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) = (𝑥𝑛))
5445, 52, 27, 27, 47, 48, 53ofval 7415 . . . . . 6 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹f𝑥)‘𝑛) = ((𝐹𝑛) − (𝑥𝑛)))
5554eqeq2d 2769 . . . . 5 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑧𝑛) = ((𝐹f𝑥)‘𝑛) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
5644, 51, 553bitr4d 314 . . . 4 ((((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
5756ralbidva 3125 . . 3 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
5823adantrl 715 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) ∈ 𝑆)
5928, 58sseldi 3890 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) ∈ 𝐷)
6010psrbagfOLD 20681 . . . . . 6 ((𝐼𝑉 ∧ (𝐹f𝑧) ∈ 𝐷) → (𝐹f𝑧):𝐼⟶ℕ0)
6127, 59, 60syl2anc 587 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧):𝐼⟶ℕ0)
6261ffnd 6499 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) Fn 𝐼)
63 eqfnfv 6793 . . . 4 ((𝑥 Fn 𝐼 ∧ (𝐹f𝑧) Fn 𝐼) → (𝑥 = (𝐹f𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛)))
6452, 62, 63syl2anc 587 . . 3 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹f𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛)))
6518adantrr 716 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑥) ∈ 𝑆)
6628, 65sseldi 3890 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑥) ∈ 𝐷)
6710psrbagfOLD 20681 . . . . . 6 ((𝐼𝑉 ∧ (𝐹f𝑥) ∈ 𝐷) → (𝐹f𝑥):𝐼⟶ℕ0)
6827, 66, 67syl2anc 587 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑥):𝐼⟶ℕ0)
6968ffnd 6499 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑥) Fn 𝐼)
70 eqfnfv 6793 . . . 4 ((𝑧 Fn 𝐼 ∧ (𝐹f𝑥) Fn 𝐼) → (𝑧 = (𝐹f𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
7146, 69, 70syl2anc 587 . . 3 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝑧 = (𝐹f𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
7257, 64, 713bitr4d 314 . 2 (((𝐼𝑉𝐹𝐷) ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹f𝑧) ↔ 𝑧 = (𝐹f𝑥)))
731, 18, 23, 72f1o2d 7395 1 ((𝐼𝑉𝐹𝐷) → (𝑥𝑆 ↦ (𝐹f𝑥)):𝑆1-1-onto𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  {crab 3074   class class class wbr 5032   ↦ cmpt 5112  ◡ccnv 5523   “ cima 5527   Fn wfn 6330  ⟶wf 6331  –1-1-onto→wf1o 6334  ‘cfv 6335  (class class class)co 7150   ∘f cof 7403   ∘r cofr 7404   ↑m cmap 8416  Fincfn 8527  ℂcc 10573   ≤ cle 10714   − cmin 10908  ℕcn 11674  ℕ0cn0 11934 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-ofr 7406  df-om 7580  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935 This theorem is referenced by:  psrass1lemOLD  20702
 Copyright terms: Public domain W3C validator