Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt15 Structured version   Visualization version   GIF version

Theorem metakunt15 41924
Description: Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt15.1 (𝜑𝑀 ∈ ℕ)
metakunt15.2 (𝜑𝐼 ∈ ℕ)
metakunt15.3 (𝜑𝐼𝑀)
metakunt15.4 𝐹 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
Assertion
Ref Expression
metakunt15 (𝜑𝐹:(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem metakunt15
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt15.4 . 2 𝐹 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
2 1zzd 12636 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 1 ∈ ℤ)
3 metakunt15.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
43nnzd 12628 . . . . 5 (𝜑𝐼 ∈ ℤ)
54adantr 479 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝐼 ∈ ℤ)
65, 2zsubcld 12714 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝐼 − 1) ∈ ℤ)
7 metakunt15.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
87nnzd 12628 . . . . 5 (𝜑𝑀 ∈ ℤ)
98adantr 479 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝑀 ∈ ℤ)
109, 5zsubcld 12714 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ℤ)
11 simpr 483 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝑥 ∈ (1...(𝐼 − 1)))
12 elfz3 13556 . . . 4 ((𝑀𝐼) ∈ ℤ → (𝑀𝐼) ∈ ((𝑀𝐼)...(𝑀𝐼)))
1310, 12syl 17 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ((𝑀𝐼)...(𝑀𝐼)))
1410zcnd 12710 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ℂ)
15 1cnd 11247 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 1 ∈ ℂ)
1614, 15addcomd 11454 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → ((𝑀𝐼) + 1) = (1 + (𝑀𝐼)))
177nncnd 12271 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
183nncnd 12271 . . . . . . 7 (𝜑𝐼 ∈ ℂ)
19 1cnd 11247 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2017, 18, 19npncand 11633 . . . . . 6 (𝜑 → ((𝑀𝐼) + (𝐼 − 1)) = (𝑀 − 1))
2120eqcomd 2732 . . . . 5 (𝜑 → (𝑀 − 1) = ((𝑀𝐼) + (𝐼 − 1)))
2217, 18subcld 11609 . . . . . 6 (𝜑 → (𝑀𝐼) ∈ ℂ)
2318, 19subcld 11609 . . . . . 6 (𝜑 → (𝐼 − 1) ∈ ℂ)
2422, 23addcomd 11454 . . . . 5 (𝜑 → ((𝑀𝐼) + (𝐼 − 1)) = ((𝐼 − 1) + (𝑀𝐼)))
2521, 24eqtrd 2766 . . . 4 (𝜑 → (𝑀 − 1) = ((𝐼 − 1) + (𝑀𝐼)))
2625adantr 479 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀 − 1) = ((𝐼 − 1) + (𝑀𝐼)))
272, 6, 10, 10, 11, 13, 16, 26fzadd2d 41686 . 2 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑥 + (𝑀𝐼)) ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))
28 1zzd 12636 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ∈ ℤ)
294adantr 479 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝐼 ∈ ℤ)
3029, 28zsubcld 12714 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝐼 − 1) ∈ ℤ)
31 elfzelz 13546 . . . . 5 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ∈ ℤ)
3231adantl 480 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ∈ ℤ)
338adantr 479 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑀 ∈ ℤ)
3433, 29zsubcld 12714 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑀𝐼) ∈ ℤ)
3532, 34zsubcld 12714 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ∈ ℤ)
36 elfzle1 13549 . . . . 5 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → ((𝑀𝐼) + 1) ≤ 𝑦)
3736adantl 480 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑀𝐼) + 1) ≤ 𝑦)
3834zred 12709 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑀𝐼) ∈ ℝ)
39 1red 11253 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ∈ ℝ)
4032zred 12709 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ∈ ℝ)
4138, 39, 40leaddsub2d 11854 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (((𝑀𝐼) + 1) ≤ 𝑦 ↔ 1 ≤ (𝑦 − (𝑀𝐼))))
4237, 41mpbid 231 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ≤ (𝑦 − (𝑀𝐼)))
43 elfzle2 13550 . . . . . 6 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ≤ (𝑀 − 1))
4443adantl 480 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ≤ (𝑀 − 1))
4520adantr 479 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑀𝐼) + (𝐼 − 1)) = (𝑀 − 1))
4644, 45breqtrrd 5171 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ≤ ((𝑀𝐼) + (𝐼 − 1)))
4730zred 12709 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝐼 − 1) ∈ ℝ)
4840, 38, 47lesubadd2d 11851 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑦 − (𝑀𝐼)) ≤ (𝐼 − 1) ↔ 𝑦 ≤ ((𝑀𝐼) + (𝐼 − 1))))
4946, 48mpbird 256 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ≤ (𝐼 − 1))
5028, 30, 35, 42, 49elfzd 13537 . 2 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ∈ (1...(𝐼 − 1)))
51 eqcom 2733 . . . . 5 ((𝑦 − (𝑀𝐼)) = 𝑥𝑥 = (𝑦 − (𝑀𝐼)))
5251a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑦 − (𝑀𝐼)) = 𝑥𝑥 = (𝑦 − (𝑀𝐼))))
5331zcnd 12710 . . . . . 6 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ∈ ℂ)
5453ad2antll 727 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑦 ∈ ℂ)
5517adantr 479 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑀 ∈ ℂ)
5618adantr 479 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝐼 ∈ ℂ)
5755, 56subcld 11609 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑀𝐼) ∈ ℂ)
58 elfznn 13575 . . . . . . 7 (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℕ)
5958nncnd 12271 . . . . . 6 (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℂ)
6059ad2antrl 726 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑥 ∈ ℂ)
6154, 57, 60subaddd 11627 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑦 − (𝑀𝐼)) = 𝑥 ↔ ((𝑀𝐼) + 𝑥) = 𝑦))
6252, 61bitr3d 280 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑥 = (𝑦 − (𝑀𝐼)) ↔ ((𝑀𝐼) + 𝑥) = 𝑦))
6357, 60addcomd 11454 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑀𝐼) + 𝑥) = (𝑥 + (𝑀𝐼)))
6463eqeq1d 2728 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (((𝑀𝐼) + 𝑥) = 𝑦 ↔ (𝑥 + (𝑀𝐼)) = 𝑦))
65 eqcom 2733 . . . . 5 ((𝑥 + (𝑀𝐼)) = 𝑦𝑦 = (𝑥 + (𝑀𝐼)))
6665a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑥 + (𝑀𝐼)) = 𝑦𝑦 = (𝑥 + (𝑀𝐼))))
6764, 66bitrd 278 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (((𝑀𝐼) + 𝑥) = 𝑦𝑦 = (𝑥 + (𝑀𝐼))))
6862, 67bitrd 278 . 2 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑥 = (𝑦 − (𝑀𝐼)) ↔ 𝑦 = (𝑥 + (𝑀𝐼))))
691, 27, 50, 68f1o2d 7669 1 (𝜑𝐹:(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099   class class class wbr 5143  cmpt 5226  1-1-ontowf1o 6542  (class class class)co 7413  cc 11144  1c1 11147   + caddc 11149  cle 11287  cmin 11482  cn 12255  cz 12601  ...cfz 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-n0 12516  df-z 12602  df-uz 12866  df-fz 13530
This theorem is referenced by:  metakunt25  41934
  Copyright terms: Public domain W3C validator