Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt15 Structured version   Visualization version   GIF version

Theorem metakunt15 40987
Description: Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt15.1 (𝜑𝑀 ∈ ℕ)
metakunt15.2 (𝜑𝐼 ∈ ℕ)
metakunt15.3 (𝜑𝐼𝑀)
metakunt15.4 𝐹 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
Assertion
Ref Expression
metakunt15 (𝜑𝐹:(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem metakunt15
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt15.4 . 2 𝐹 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
2 1zzd 12589 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 1 ∈ ℤ)
3 metakunt15.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
43nnzd 12581 . . . . 5 (𝜑𝐼 ∈ ℤ)
54adantr 481 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝐼 ∈ ℤ)
65, 2zsubcld 12667 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝐼 − 1) ∈ ℤ)
7 metakunt15.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
87nnzd 12581 . . . . 5 (𝜑𝑀 ∈ ℤ)
98adantr 481 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝑀 ∈ ℤ)
109, 5zsubcld 12667 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ℤ)
11 simpr 485 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝑥 ∈ (1...(𝐼 − 1)))
12 elfz3 13507 . . . 4 ((𝑀𝐼) ∈ ℤ → (𝑀𝐼) ∈ ((𝑀𝐼)...(𝑀𝐼)))
1310, 12syl 17 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ((𝑀𝐼)...(𝑀𝐼)))
1410zcnd 12663 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ℂ)
15 1cnd 11205 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 1 ∈ ℂ)
1614, 15addcomd 11412 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → ((𝑀𝐼) + 1) = (1 + (𝑀𝐼)))
177nncnd 12224 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
183nncnd 12224 . . . . . . 7 (𝜑𝐼 ∈ ℂ)
19 1cnd 11205 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2017, 18, 19npncand 11591 . . . . . 6 (𝜑 → ((𝑀𝐼) + (𝐼 − 1)) = (𝑀 − 1))
2120eqcomd 2738 . . . . 5 (𝜑 → (𝑀 − 1) = ((𝑀𝐼) + (𝐼 − 1)))
2217, 18subcld 11567 . . . . . 6 (𝜑 → (𝑀𝐼) ∈ ℂ)
2318, 19subcld 11567 . . . . . 6 (𝜑 → (𝐼 − 1) ∈ ℂ)
2422, 23addcomd 11412 . . . . 5 (𝜑 → ((𝑀𝐼) + (𝐼 − 1)) = ((𝐼 − 1) + (𝑀𝐼)))
2521, 24eqtrd 2772 . . . 4 (𝜑 → (𝑀 − 1) = ((𝐼 − 1) + (𝑀𝐼)))
2625adantr 481 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀 − 1) = ((𝐼 − 1) + (𝑀𝐼)))
272, 6, 10, 10, 11, 13, 16, 26fzadd2d 40831 . 2 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑥 + (𝑀𝐼)) ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))
28 1zzd 12589 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ∈ ℤ)
294adantr 481 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝐼 ∈ ℤ)
3029, 28zsubcld 12667 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝐼 − 1) ∈ ℤ)
31 elfzelz 13497 . . . . 5 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ∈ ℤ)
3231adantl 482 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ∈ ℤ)
338adantr 481 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑀 ∈ ℤ)
3433, 29zsubcld 12667 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑀𝐼) ∈ ℤ)
3532, 34zsubcld 12667 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ∈ ℤ)
36 elfzle1 13500 . . . . 5 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → ((𝑀𝐼) + 1) ≤ 𝑦)
3736adantl 482 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑀𝐼) + 1) ≤ 𝑦)
3834zred 12662 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑀𝐼) ∈ ℝ)
39 1red 11211 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ∈ ℝ)
4032zred 12662 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ∈ ℝ)
4138, 39, 40leaddsub2d 11812 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (((𝑀𝐼) + 1) ≤ 𝑦 ↔ 1 ≤ (𝑦 − (𝑀𝐼))))
4237, 41mpbid 231 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ≤ (𝑦 − (𝑀𝐼)))
43 elfzle2 13501 . . . . . 6 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ≤ (𝑀 − 1))
4443adantl 482 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ≤ (𝑀 − 1))
4520adantr 481 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑀𝐼) + (𝐼 − 1)) = (𝑀 − 1))
4644, 45breqtrrd 5175 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ≤ ((𝑀𝐼) + (𝐼 − 1)))
4730zred 12662 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝐼 − 1) ∈ ℝ)
4840, 38, 47lesubadd2d 11809 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑦 − (𝑀𝐼)) ≤ (𝐼 − 1) ↔ 𝑦 ≤ ((𝑀𝐼) + (𝐼 − 1))))
4946, 48mpbird 256 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ≤ (𝐼 − 1))
5028, 30, 35, 42, 49elfzd 13488 . 2 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ∈ (1...(𝐼 − 1)))
51 eqcom 2739 . . . . 5 ((𝑦 − (𝑀𝐼)) = 𝑥𝑥 = (𝑦 − (𝑀𝐼)))
5251a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑦 − (𝑀𝐼)) = 𝑥𝑥 = (𝑦 − (𝑀𝐼))))
5331zcnd 12663 . . . . . 6 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ∈ ℂ)
5453ad2antll 727 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑦 ∈ ℂ)
5517adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑀 ∈ ℂ)
5618adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝐼 ∈ ℂ)
5755, 56subcld 11567 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑀𝐼) ∈ ℂ)
58 elfznn 13526 . . . . . . 7 (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℕ)
5958nncnd 12224 . . . . . 6 (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℂ)
6059ad2antrl 726 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑥 ∈ ℂ)
6154, 57, 60subaddd 11585 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑦 − (𝑀𝐼)) = 𝑥 ↔ ((𝑀𝐼) + 𝑥) = 𝑦))
6252, 61bitr3d 280 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑥 = (𝑦 − (𝑀𝐼)) ↔ ((𝑀𝐼) + 𝑥) = 𝑦))
6357, 60addcomd 11412 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑀𝐼) + 𝑥) = (𝑥 + (𝑀𝐼)))
6463eqeq1d 2734 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (((𝑀𝐼) + 𝑥) = 𝑦 ↔ (𝑥 + (𝑀𝐼)) = 𝑦))
65 eqcom 2739 . . . . 5 ((𝑥 + (𝑀𝐼)) = 𝑦𝑦 = (𝑥 + (𝑀𝐼)))
6665a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑥 + (𝑀𝐼)) = 𝑦𝑦 = (𝑥 + (𝑀𝐼))))
6764, 66bitrd 278 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (((𝑀𝐼) + 𝑥) = 𝑦𝑦 = (𝑥 + (𝑀𝐼))))
6862, 67bitrd 278 . 2 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑥 = (𝑦 − (𝑀𝐼)) ↔ 𝑦 = (𝑥 + (𝑀𝐼))))
691, 27, 50, 68f1o2d 7656 1 (𝜑𝐹:(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5147  cmpt 5230  1-1-ontowf1o 6539  (class class class)co 7405  cc 11104  1c1 11107   + caddc 11109  cle 11245  cmin 11440  cn 12208  cz 12554  ...cfz 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481
This theorem is referenced by:  metakunt25  40997
  Copyright terms: Public domain W3C validator