Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt15 Structured version   Visualization version   GIF version

Theorem metakunt15 39646
Description: Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt15.1 (𝜑𝑀 ∈ ℕ)
metakunt15.2 (𝜑𝐼 ∈ ℕ)
metakunt15.3 (𝜑𝐼𝑀)
metakunt15.4 𝐹 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
Assertion
Ref Expression
metakunt15 (𝜑𝐹:(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem metakunt15
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt15.4 . 2 𝐹 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
2 1zzd 12037 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 1 ∈ ℤ)
3 metakunt15.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
43nnzd 12110 . . . . 5 (𝜑𝐼 ∈ ℤ)
54adantr 485 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝐼 ∈ ℤ)
65, 2zsubcld 12116 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝐼 − 1) ∈ ℤ)
7 metakunt15.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
87nnzd 12110 . . . . 5 (𝜑𝑀 ∈ ℤ)
98adantr 485 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝑀 ∈ ℤ)
109, 5zsubcld 12116 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ℤ)
11 simpr 489 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝑥 ∈ (1...(𝐼 − 1)))
12 elfz3 12951 . . . 4 ((𝑀𝐼) ∈ ℤ → (𝑀𝐼) ∈ ((𝑀𝐼)...(𝑀𝐼)))
1310, 12syl 17 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ((𝑀𝐼)...(𝑀𝐼)))
1410zcnd 12112 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ℂ)
15 1cnd 10659 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 1 ∈ ℂ)
1614, 15addcomd 10865 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → ((𝑀𝐼) + 1) = (1 + (𝑀𝐼)))
177nncnd 11675 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
183nncnd 11675 . . . . . . 7 (𝜑𝐼 ∈ ℂ)
19 1cnd 10659 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2017, 18, 19npncand 11044 . . . . . 6 (𝜑 → ((𝑀𝐼) + (𝐼 − 1)) = (𝑀 − 1))
2120eqcomd 2765 . . . . 5 (𝜑 → (𝑀 − 1) = ((𝑀𝐼) + (𝐼 − 1)))
2217, 18subcld 11020 . . . . . 6 (𝜑 → (𝑀𝐼) ∈ ℂ)
2318, 19subcld 11020 . . . . . 6 (𝜑 → (𝐼 − 1) ∈ ℂ)
2422, 23addcomd 10865 . . . . 5 (𝜑 → ((𝑀𝐼) + (𝐼 − 1)) = ((𝐼 − 1) + (𝑀𝐼)))
2521, 24eqtrd 2794 . . . 4 (𝜑 → (𝑀 − 1) = ((𝐼 − 1) + (𝑀𝐼)))
2625adantr 485 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀 − 1) = ((𝐼 − 1) + (𝑀𝐼)))
272, 6, 10, 10, 11, 13, 16, 26fzadd2d 39530 . 2 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑥 + (𝑀𝐼)) ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))
28 1zzd 12037 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ∈ ℤ)
294adantr 485 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝐼 ∈ ℤ)
3029, 28zsubcld 12116 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝐼 − 1) ∈ ℤ)
31 elfzelz 12941 . . . . 5 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ∈ ℤ)
3231adantl 486 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ∈ ℤ)
338adantr 485 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑀 ∈ ℤ)
3433, 29zsubcld 12116 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑀𝐼) ∈ ℤ)
3532, 34zsubcld 12116 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ∈ ℤ)
36 elfzle1 12944 . . . . 5 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → ((𝑀𝐼) + 1) ≤ 𝑦)
3736adantl 486 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑀𝐼) + 1) ≤ 𝑦)
3834zred 12111 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑀𝐼) ∈ ℝ)
39 1red 10665 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ∈ ℝ)
4032zred 12111 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ∈ ℝ)
4138, 39, 40leaddsub2d 11265 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (((𝑀𝐼) + 1) ≤ 𝑦 ↔ 1 ≤ (𝑦 − (𝑀𝐼))))
4237, 41mpbid 235 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ≤ (𝑦 − (𝑀𝐼)))
43 elfzle2 12945 . . . . . 6 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ≤ (𝑀 − 1))
4443adantl 486 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ≤ (𝑀 − 1))
4520adantr 485 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑀𝐼) + (𝐼 − 1)) = (𝑀 − 1))
4644, 45breqtrrd 5053 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ≤ ((𝑀𝐼) + (𝐼 − 1)))
4730zred 12111 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝐼 − 1) ∈ ℝ)
4840, 38, 47lesubadd2d 11262 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑦 − (𝑀𝐼)) ≤ (𝐼 − 1) ↔ 𝑦 ≤ ((𝑀𝐼) + (𝐼 − 1))))
4946, 48mpbird 260 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ≤ (𝐼 − 1))
5028, 30, 35, 42, 49elfzd 12932 . 2 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ∈ (1...(𝐼 − 1)))
51 eqcom 2766 . . . . 5 ((𝑦 − (𝑀𝐼)) = 𝑥𝑥 = (𝑦 − (𝑀𝐼)))
5251a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑦 − (𝑀𝐼)) = 𝑥𝑥 = (𝑦 − (𝑀𝐼))))
5331zcnd 12112 . . . . . 6 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ∈ ℂ)
5453ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑦 ∈ ℂ)
5517adantr 485 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑀 ∈ ℂ)
5618adantr 485 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝐼 ∈ ℂ)
5755, 56subcld 11020 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑀𝐼) ∈ ℂ)
58 elfznn 12970 . . . . . . 7 (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℕ)
5958nncnd 11675 . . . . . 6 (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℂ)
6059ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑥 ∈ ℂ)
6154, 57, 60subaddd 11038 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑦 − (𝑀𝐼)) = 𝑥 ↔ ((𝑀𝐼) + 𝑥) = 𝑦))
6252, 61bitr3d 284 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑥 = (𝑦 − (𝑀𝐼)) ↔ ((𝑀𝐼) + 𝑥) = 𝑦))
6357, 60addcomd 10865 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑀𝐼) + 𝑥) = (𝑥 + (𝑀𝐼)))
6463eqeq1d 2761 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (((𝑀𝐼) + 𝑥) = 𝑦 ↔ (𝑥 + (𝑀𝐼)) = 𝑦))
65 eqcom 2766 . . . . 5 ((𝑥 + (𝑀𝐼)) = 𝑦𝑦 = (𝑥 + (𝑀𝐼)))
6665a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑥 + (𝑀𝐼)) = 𝑦𝑦 = (𝑥 + (𝑀𝐼))))
6764, 66bitrd 282 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (((𝑀𝐼) + 𝑥) = 𝑦𝑦 = (𝑥 + (𝑀𝐼))))
6862, 67bitrd 282 . 2 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑥 = (𝑦 − (𝑀𝐼)) ↔ 𝑦 = (𝑥 + (𝑀𝐼))))
691, 27, 50, 68f1o2d 7388 1 (𝜑𝐹:(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112   class class class wbr 5025  cmpt 5105  1-1-ontowf1o 6327  (class class class)co 7143  cc 10558  1c1 10561   + caddc 10563  cle 10699  cmin 10893  cn 11659  cz 12005  ...cfz 12924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925
This theorem is referenced by:  metakunt25  39656
  Copyright terms: Public domain W3C validator