Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt15 Structured version   Visualization version   GIF version

Theorem metakunt15 42232
Description: Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt15.1 (𝜑𝑀 ∈ ℕ)
metakunt15.2 (𝜑𝐼 ∈ ℕ)
metakunt15.3 (𝜑𝐼𝑀)
metakunt15.4 𝐹 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
Assertion
Ref Expression
metakunt15 (𝜑𝐹:(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem metakunt15
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt15.4 . 2 𝐹 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
2 1zzd 12623 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 1 ∈ ℤ)
3 metakunt15.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
43nnzd 12615 . . . . 5 (𝜑𝐼 ∈ ℤ)
54adantr 480 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝐼 ∈ ℤ)
65, 2zsubcld 12702 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝐼 − 1) ∈ ℤ)
7 metakunt15.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
87nnzd 12615 . . . . 5 (𝜑𝑀 ∈ ℤ)
98adantr 480 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝑀 ∈ ℤ)
109, 5zsubcld 12702 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ℤ)
11 simpr 484 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝑥 ∈ (1...(𝐼 − 1)))
12 elfz3 13551 . . . 4 ((𝑀𝐼) ∈ ℤ → (𝑀𝐼) ∈ ((𝑀𝐼)...(𝑀𝐼)))
1310, 12syl 17 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ((𝑀𝐼)...(𝑀𝐼)))
1410zcnd 12698 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ℂ)
15 1cnd 11230 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 1 ∈ ℂ)
1614, 15addcomd 11437 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → ((𝑀𝐼) + 1) = (1 + (𝑀𝐼)))
177nncnd 12256 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
183nncnd 12256 . . . . . . 7 (𝜑𝐼 ∈ ℂ)
19 1cnd 11230 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2017, 18, 19npncand 11618 . . . . . 6 (𝜑 → ((𝑀𝐼) + (𝐼 − 1)) = (𝑀 − 1))
2120eqcomd 2741 . . . . 5 (𝜑 → (𝑀 − 1) = ((𝑀𝐼) + (𝐼 − 1)))
2217, 18subcld 11594 . . . . . 6 (𝜑 → (𝑀𝐼) ∈ ℂ)
2318, 19subcld 11594 . . . . . 6 (𝜑 → (𝐼 − 1) ∈ ℂ)
2422, 23addcomd 11437 . . . . 5 (𝜑 → ((𝑀𝐼) + (𝐼 − 1)) = ((𝐼 − 1) + (𝑀𝐼)))
2521, 24eqtrd 2770 . . . 4 (𝜑 → (𝑀 − 1) = ((𝐼 − 1) + (𝑀𝐼)))
2625adantr 480 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀 − 1) = ((𝐼 − 1) + (𝑀𝐼)))
272, 6, 10, 10, 11, 13, 16, 26fzadd2d 41991 . 2 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑥 + (𝑀𝐼)) ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))
28 1zzd 12623 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ∈ ℤ)
294adantr 480 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝐼 ∈ ℤ)
3029, 28zsubcld 12702 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝐼 − 1) ∈ ℤ)
31 elfzelz 13541 . . . . 5 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ∈ ℤ)
3231adantl 481 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ∈ ℤ)
338adantr 480 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑀 ∈ ℤ)
3433, 29zsubcld 12702 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑀𝐼) ∈ ℤ)
3532, 34zsubcld 12702 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ∈ ℤ)
36 elfzle1 13544 . . . . 5 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → ((𝑀𝐼) + 1) ≤ 𝑦)
3736adantl 481 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑀𝐼) + 1) ≤ 𝑦)
3834zred 12697 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑀𝐼) ∈ ℝ)
39 1red 11236 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ∈ ℝ)
4032zred 12697 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ∈ ℝ)
4138, 39, 40leaddsub2d 11839 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (((𝑀𝐼) + 1) ≤ 𝑦 ↔ 1 ≤ (𝑦 − (𝑀𝐼))))
4237, 41mpbid 232 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ≤ (𝑦 − (𝑀𝐼)))
43 elfzle2 13545 . . . . . 6 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ≤ (𝑀 − 1))
4443adantl 481 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ≤ (𝑀 − 1))
4520adantr 480 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑀𝐼) + (𝐼 − 1)) = (𝑀 − 1))
4644, 45breqtrrd 5147 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ≤ ((𝑀𝐼) + (𝐼 − 1)))
4730zred 12697 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝐼 − 1) ∈ ℝ)
4840, 38, 47lesubadd2d 11836 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑦 − (𝑀𝐼)) ≤ (𝐼 − 1) ↔ 𝑦 ≤ ((𝑀𝐼) + (𝐼 − 1))))
4946, 48mpbird 257 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ≤ (𝐼 − 1))
5028, 30, 35, 42, 49elfzd 13532 . 2 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ∈ (1...(𝐼 − 1)))
51 eqcom 2742 . . . . 5 ((𝑦 − (𝑀𝐼)) = 𝑥𝑥 = (𝑦 − (𝑀𝐼)))
5251a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑦 − (𝑀𝐼)) = 𝑥𝑥 = (𝑦 − (𝑀𝐼))))
5331zcnd 12698 . . . . . 6 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ∈ ℂ)
5453ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑦 ∈ ℂ)
5517adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑀 ∈ ℂ)
5618adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝐼 ∈ ℂ)
5755, 56subcld 11594 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑀𝐼) ∈ ℂ)
58 elfznn 13570 . . . . . . 7 (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℕ)
5958nncnd 12256 . . . . . 6 (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℂ)
6059ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑥 ∈ ℂ)
6154, 57, 60subaddd 11612 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑦 − (𝑀𝐼)) = 𝑥 ↔ ((𝑀𝐼) + 𝑥) = 𝑦))
6252, 61bitr3d 281 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑥 = (𝑦 − (𝑀𝐼)) ↔ ((𝑀𝐼) + 𝑥) = 𝑦))
6357, 60addcomd 11437 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑀𝐼) + 𝑥) = (𝑥 + (𝑀𝐼)))
6463eqeq1d 2737 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (((𝑀𝐼) + 𝑥) = 𝑦 ↔ (𝑥 + (𝑀𝐼)) = 𝑦))
65 eqcom 2742 . . . . 5 ((𝑥 + (𝑀𝐼)) = 𝑦𝑦 = (𝑥 + (𝑀𝐼)))
6665a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑥 + (𝑀𝐼)) = 𝑦𝑦 = (𝑥 + (𝑀𝐼))))
6764, 66bitrd 279 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (((𝑀𝐼) + 𝑥) = 𝑦𝑦 = (𝑥 + (𝑀𝐼))))
6862, 67bitrd 279 . 2 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑥 = (𝑦 − (𝑀𝐼)) ↔ 𝑦 = (𝑥 + (𝑀𝐼))))
691, 27, 50, 68f1o2d 7661 1 (𝜑𝐹:(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  cmpt 5201  1-1-ontowf1o 6530  (class class class)co 7405  cc 11127  1c1 11130   + caddc 11132  cle 11270  cmin 11466  cn 12240  cz 12588  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525
This theorem is referenced by:  metakunt25  42242
  Copyright terms: Public domain W3C validator