Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt15 Structured version   Visualization version   GIF version

Theorem metakunt15 39861
Description: Construction of another permutation. (Contributed by metakunt, 25-May-2024.)
Hypotheses
Ref Expression
metakunt15.1 (𝜑𝑀 ∈ ℕ)
metakunt15.2 (𝜑𝐼 ∈ ℕ)
metakunt15.3 (𝜑𝐼𝑀)
metakunt15.4 𝐹 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
Assertion
Ref Expression
metakunt15 (𝜑𝐹:(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem metakunt15
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 metakunt15.4 . 2 𝐹 = (𝑥 ∈ (1...(𝐼 − 1)) ↦ (𝑥 + (𝑀𝐼)))
2 1zzd 12208 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 1 ∈ ℤ)
3 metakunt15.2 . . . . . 6 (𝜑𝐼 ∈ ℕ)
43nnzd 12281 . . . . 5 (𝜑𝐼 ∈ ℤ)
54adantr 484 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝐼 ∈ ℤ)
65, 2zsubcld 12287 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝐼 − 1) ∈ ℤ)
7 metakunt15.1 . . . . . 6 (𝜑𝑀 ∈ ℕ)
87nnzd 12281 . . . . 5 (𝜑𝑀 ∈ ℤ)
98adantr 484 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝑀 ∈ ℤ)
109, 5zsubcld 12287 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ℤ)
11 simpr 488 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 𝑥 ∈ (1...(𝐼 − 1)))
12 elfz3 13122 . . . 4 ((𝑀𝐼) ∈ ℤ → (𝑀𝐼) ∈ ((𝑀𝐼)...(𝑀𝐼)))
1310, 12syl 17 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ((𝑀𝐼)...(𝑀𝐼)))
1410zcnd 12283 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀𝐼) ∈ ℂ)
15 1cnd 10828 . . . 4 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → 1 ∈ ℂ)
1614, 15addcomd 11034 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → ((𝑀𝐼) + 1) = (1 + (𝑀𝐼)))
177nncnd 11846 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
183nncnd 11846 . . . . . . 7 (𝜑𝐼 ∈ ℂ)
19 1cnd 10828 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
2017, 18, 19npncand 11213 . . . . . 6 (𝜑 → ((𝑀𝐼) + (𝐼 − 1)) = (𝑀 − 1))
2120eqcomd 2743 . . . . 5 (𝜑 → (𝑀 − 1) = ((𝑀𝐼) + (𝐼 − 1)))
2217, 18subcld 11189 . . . . . 6 (𝜑 → (𝑀𝐼) ∈ ℂ)
2318, 19subcld 11189 . . . . . 6 (𝜑 → (𝐼 − 1) ∈ ℂ)
2422, 23addcomd 11034 . . . . 5 (𝜑 → ((𝑀𝐼) + (𝐼 − 1)) = ((𝐼 − 1) + (𝑀𝐼)))
2521, 24eqtrd 2777 . . . 4 (𝜑 → (𝑀 − 1) = ((𝐼 − 1) + (𝑀𝐼)))
2625adantr 484 . . 3 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑀 − 1) = ((𝐼 − 1) + (𝑀𝐼)))
272, 6, 10, 10, 11, 13, 16, 26fzadd2d 39720 . 2 ((𝜑𝑥 ∈ (1...(𝐼 − 1))) → (𝑥 + (𝑀𝐼)) ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))
28 1zzd 12208 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ∈ ℤ)
294adantr 484 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝐼 ∈ ℤ)
3029, 28zsubcld 12287 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝐼 − 1) ∈ ℤ)
31 elfzelz 13112 . . . . 5 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ∈ ℤ)
3231adantl 485 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ∈ ℤ)
338adantr 484 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑀 ∈ ℤ)
3433, 29zsubcld 12287 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑀𝐼) ∈ ℤ)
3532, 34zsubcld 12287 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ∈ ℤ)
36 elfzle1 13115 . . . . 5 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → ((𝑀𝐼) + 1) ≤ 𝑦)
3736adantl 485 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑀𝐼) + 1) ≤ 𝑦)
3834zred 12282 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑀𝐼) ∈ ℝ)
39 1red 10834 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ∈ ℝ)
4032zred 12282 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ∈ ℝ)
4138, 39, 40leaddsub2d 11434 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (((𝑀𝐼) + 1) ≤ 𝑦 ↔ 1 ≤ (𝑦 − (𝑀𝐼))))
4237, 41mpbid 235 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 1 ≤ (𝑦 − (𝑀𝐼)))
43 elfzle2 13116 . . . . . 6 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ≤ (𝑀 − 1))
4443adantl 485 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ≤ (𝑀 − 1))
4520adantr 484 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑀𝐼) + (𝐼 − 1)) = (𝑀 − 1))
4644, 45breqtrrd 5081 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → 𝑦 ≤ ((𝑀𝐼) + (𝐼 − 1)))
4730zred 12282 . . . . 5 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝐼 − 1) ∈ ℝ)
4840, 38, 47lesubadd2d 11431 . . . 4 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → ((𝑦 − (𝑀𝐼)) ≤ (𝐼 − 1) ↔ 𝑦 ≤ ((𝑀𝐼) + (𝐼 − 1))))
4946, 48mpbird 260 . . 3 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ≤ (𝐼 − 1))
5028, 30, 35, 42, 49elfzd 13103 . 2 ((𝜑𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1))) → (𝑦 − (𝑀𝐼)) ∈ (1...(𝐼 − 1)))
51 eqcom 2744 . . . . 5 ((𝑦 − (𝑀𝐼)) = 𝑥𝑥 = (𝑦 − (𝑀𝐼)))
5251a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑦 − (𝑀𝐼)) = 𝑥𝑥 = (𝑦 − (𝑀𝐼))))
5331zcnd 12283 . . . . . 6 (𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)) → 𝑦 ∈ ℂ)
5453ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑦 ∈ ℂ)
5517adantr 484 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑀 ∈ ℂ)
5618adantr 484 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝐼 ∈ ℂ)
5755, 56subcld 11189 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑀𝐼) ∈ ℂ)
58 elfznn 13141 . . . . . . 7 (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℕ)
5958nncnd 11846 . . . . . 6 (𝑥 ∈ (1...(𝐼 − 1)) → 𝑥 ∈ ℂ)
6059ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → 𝑥 ∈ ℂ)
6154, 57, 60subaddd 11207 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑦 − (𝑀𝐼)) = 𝑥 ↔ ((𝑀𝐼) + 𝑥) = 𝑦))
6252, 61bitr3d 284 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑥 = (𝑦 − (𝑀𝐼)) ↔ ((𝑀𝐼) + 𝑥) = 𝑦))
6357, 60addcomd 11034 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑀𝐼) + 𝑥) = (𝑥 + (𝑀𝐼)))
6463eqeq1d 2739 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (((𝑀𝐼) + 𝑥) = 𝑦 ↔ (𝑥 + (𝑀𝐼)) = 𝑦))
65 eqcom 2744 . . . . 5 ((𝑥 + (𝑀𝐼)) = 𝑦𝑦 = (𝑥 + (𝑀𝐼)))
6665a1i 11 . . . 4 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → ((𝑥 + (𝑀𝐼)) = 𝑦𝑦 = (𝑥 + (𝑀𝐼))))
6764, 66bitrd 282 . . 3 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (((𝑀𝐼) + 𝑥) = 𝑦𝑦 = (𝑥 + (𝑀𝐼))))
6862, 67bitrd 282 . 2 ((𝜑 ∧ (𝑥 ∈ (1...(𝐼 − 1)) ∧ 𝑦 ∈ (((𝑀𝐼) + 1)...(𝑀 − 1)))) → (𝑥 = (𝑦 − (𝑀𝐼)) ↔ 𝑦 = (𝑥 + (𝑀𝐼))))
691, 27, 50, 68f1o2d 7459 1 (𝜑𝐹:(1...(𝐼 − 1))–1-1-onto→(((𝑀𝐼) + 1)...(𝑀 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110   class class class wbr 5053  cmpt 5135  1-1-ontowf1o 6379  (class class class)co 7213  cc 10727  1c1 10730   + caddc 10732  cle 10868  cmin 11062  cn 11830  cz 12176  ...cfz 13095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096
This theorem is referenced by:  metakunt25  39871
  Copyright terms: Public domain W3C validator