MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsppwf1o Structured version   Visualization version   GIF version

Theorem dvdsppwf1o 26535
Description: A bijection from the divisors of a prime power to the integers less than the prime count. (Contributed by Mario Carneiro, 5-May-2016.)
Hypothesis
Ref Expression
dvdsppwf1o.f 𝐹 = (𝑛 ∈ (0...𝐴) ↦ (𝑃𝑛))
Assertion
Ref Expression
dvdsppwf1o ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐹:(0...𝐴)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})
Distinct variable groups:   𝑥,𝑛,𝐴   𝑃,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem dvdsppwf1o
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvdsppwf1o.f . 2 𝐹 = (𝑛 ∈ (0...𝐴) ↦ (𝑃𝑛))
2 breq1 5108 . . 3 (𝑥 = (𝑃𝑛) → (𝑥 ∥ (𝑃𝐴) ↔ (𝑃𝑛) ∥ (𝑃𝐴)))
3 prmnn 16550 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43adantr 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ)
5 elfznn0 13534 . . . 4 (𝑛 ∈ (0...𝐴) → 𝑛 ∈ ℕ0)
6 nnexpcl 13980 . . . 4 ((𝑃 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℕ)
74, 5, 6syl2an 596 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → (𝑃𝑛) ∈ ℕ)
8 prmz 16551 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
98ad2antrr 724 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → 𝑃 ∈ ℤ)
105adantl 482 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → 𝑛 ∈ ℕ0)
11 elfzuz3 13438 . . . . 5 (𝑛 ∈ (0...𝐴) → 𝐴 ∈ (ℤ𝑛))
1211adantl 482 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → 𝐴 ∈ (ℤ𝑛))
13 dvdsexp 16210 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0𝐴 ∈ (ℤ𝑛)) → (𝑃𝑛) ∥ (𝑃𝐴))
149, 10, 12, 13syl3anc 1371 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → (𝑃𝑛) ∥ (𝑃𝐴))
152, 7, 14elrabd 3647 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → (𝑃𝑛) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})
16 simpl 483 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ)
17 elrabi 3639 . . . 4 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)} → 𝑚 ∈ ℕ)
18 pccl 16721 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ ℕ) → (𝑃 pCnt 𝑚) ∈ ℕ0)
1916, 17, 18syl2an 596 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt 𝑚) ∈ ℕ0)
2016adantr 481 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑃 ∈ ℙ)
2117adantl 482 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑚 ∈ ℕ)
2221nnzd 12526 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑚 ∈ ℤ)
238ad2antrr 724 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑃 ∈ ℤ)
24 simplr 767 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝐴 ∈ ℕ0)
25 zexpcl 13982 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
2623, 24, 25syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃𝐴) ∈ ℤ)
27 breq1 5108 . . . . . . . 8 (𝑥 = 𝑚 → (𝑥 ∥ (𝑃𝐴) ↔ 𝑚 ∥ (𝑃𝐴)))
2827elrab 3645 . . . . . . 7 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)} ↔ (𝑚 ∈ ℕ ∧ 𝑚 ∥ (𝑃𝐴)))
2928simprbi 497 . . . . . 6 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)} → 𝑚 ∥ (𝑃𝐴))
3029adantl 482 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑚 ∥ (𝑃𝐴))
31 pcdvdstr 16748 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑚 ∈ ℤ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝑚 ∥ (𝑃𝐴))) → (𝑃 pCnt 𝑚) ≤ (𝑃 pCnt (𝑃𝐴)))
3220, 22, 26, 30, 31syl13anc 1372 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt 𝑚) ≤ (𝑃 pCnt (𝑃𝐴)))
33 pcidlem 16744 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
3433adantr 481 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
3532, 34breqtrd 5131 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt 𝑚) ≤ 𝐴)
36 fznn0 13533 . . . 4 (𝐴 ∈ ℕ0 → ((𝑃 pCnt 𝑚) ∈ (0...𝐴) ↔ ((𝑃 pCnt 𝑚) ∈ ℕ0 ∧ (𝑃 pCnt 𝑚) ≤ 𝐴)))
3724, 36syl 17 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → ((𝑃 pCnt 𝑚) ∈ (0...𝐴) ↔ ((𝑃 pCnt 𝑚) ∈ ℕ0 ∧ (𝑃 pCnt 𝑚) ≤ 𝐴)))
3819, 35, 37mpbir2and 711 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt 𝑚) ∈ (0...𝐴))
39 oveq2 7365 . . . . . . . . 9 (𝑛 = 𝐴 → (𝑃𝑛) = (𝑃𝐴))
4039breq2d 5117 . . . . . . . 8 (𝑛 = 𝐴 → (𝑚 ∥ (𝑃𝑛) ↔ 𝑚 ∥ (𝑃𝐴)))
4140rspcev 3581 . . . . . . 7 ((𝐴 ∈ ℕ0𝑚 ∥ (𝑃𝐴)) → ∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃𝑛))
4224, 30, 41syl2anc 584 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → ∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃𝑛))
43 pcprmpw2 16754 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃𝑛) ↔ 𝑚 = (𝑃↑(𝑃 pCnt 𝑚))))
4416, 17, 43syl2an 596 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃𝑛) ↔ 𝑚 = (𝑃↑(𝑃 pCnt 𝑚))))
4542, 44mpbid 231 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑚 = (𝑃↑(𝑃 pCnt 𝑚)))
4645adantrl 714 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → 𝑚 = (𝑃↑(𝑃 pCnt 𝑚)))
47 oveq2 7365 . . . . 5 (𝑛 = (𝑃 pCnt 𝑚) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt 𝑚)))
4847eqeq2d 2747 . . . 4 (𝑛 = (𝑃 pCnt 𝑚) → (𝑚 = (𝑃𝑛) ↔ 𝑚 = (𝑃↑(𝑃 pCnt 𝑚))))
4946, 48syl5ibrcom 246 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → (𝑛 = (𝑃 pCnt 𝑚) → 𝑚 = (𝑃𝑛)))
50 elfzelz 13441 . . . . . . 7 (𝑛 ∈ (0...𝐴) → 𝑛 ∈ ℤ)
51 pcid 16745 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℤ) → (𝑃 pCnt (𝑃𝑛)) = 𝑛)
5216, 50, 51syl2an 596 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → (𝑃 pCnt (𝑃𝑛)) = 𝑛)
5352eqcomd 2742 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → 𝑛 = (𝑃 pCnt (𝑃𝑛)))
5453adantrr 715 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → 𝑛 = (𝑃 pCnt (𝑃𝑛)))
55 oveq2 7365 . . . . 5 (𝑚 = (𝑃𝑛) → (𝑃 pCnt 𝑚) = (𝑃 pCnt (𝑃𝑛)))
5655eqeq2d 2747 . . . 4 (𝑚 = (𝑃𝑛) → (𝑛 = (𝑃 pCnt 𝑚) ↔ 𝑛 = (𝑃 pCnt (𝑃𝑛))))
5754, 56syl5ibrcom 246 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → (𝑚 = (𝑃𝑛) → 𝑛 = (𝑃 pCnt 𝑚)))
5849, 57impbid 211 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → (𝑛 = (𝑃 pCnt 𝑚) ↔ 𝑚 = (𝑃𝑛)))
591, 15, 38, 58f1o2d 7607 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐹:(0...𝐴)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  {crab 3407   class class class wbr 5105  cmpt 5188  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  0cc0 11051  cle 11190  cn 12153  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  cexp 13967  cdvds 16136  cprime 16547   pCnt cpc 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709
This theorem is referenced by:  sgmppw  26545  0sgmppw  26546  dchrisum0flblem1  26856
  Copyright terms: Public domain W3C validator