MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsppwf1o Structured version   Visualization version   GIF version

Theorem dvdsppwf1o 26335
Description: A bijection from the divisors of a prime power to the integers less than the prime count. (Contributed by Mario Carneiro, 5-May-2016.)
Hypothesis
Ref Expression
dvdsppwf1o.f 𝐹 = (𝑛 ∈ (0...𝐴) ↦ (𝑃𝑛))
Assertion
Ref Expression
dvdsppwf1o ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐹:(0...𝐴)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})
Distinct variable groups:   𝑥,𝑛,𝐴   𝑃,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem dvdsppwf1o
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 dvdsppwf1o.f . 2 𝐹 = (𝑛 ∈ (0...𝐴) ↦ (𝑃𝑛))
2 breq1 5077 . . 3 (𝑥 = (𝑃𝑛) → (𝑥 ∥ (𝑃𝐴) ↔ (𝑃𝑛) ∥ (𝑃𝐴)))
3 prmnn 16379 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
43adantr 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ)
5 elfznn0 13349 . . . 4 (𝑛 ∈ (0...𝐴) → 𝑛 ∈ ℕ0)
6 nnexpcl 13795 . . . 4 ((𝑃 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℕ)
74, 5, 6syl2an 596 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → (𝑃𝑛) ∈ ℕ)
8 prmz 16380 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
98ad2antrr 723 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → 𝑃 ∈ ℤ)
105adantl 482 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → 𝑛 ∈ ℕ0)
11 elfzuz3 13253 . . . . 5 (𝑛 ∈ (0...𝐴) → 𝐴 ∈ (ℤ𝑛))
1211adantl 482 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → 𝐴 ∈ (ℤ𝑛))
13 dvdsexp 16037 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0𝐴 ∈ (ℤ𝑛)) → (𝑃𝑛) ∥ (𝑃𝐴))
149, 10, 12, 13syl3anc 1370 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → (𝑃𝑛) ∥ (𝑃𝐴))
152, 7, 14elrabd 3626 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → (𝑃𝑛) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})
16 simpl 483 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ)
17 elrabi 3618 . . . 4 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)} → 𝑚 ∈ ℕ)
18 pccl 16550 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ ℕ) → (𝑃 pCnt 𝑚) ∈ ℕ0)
1916, 17, 18syl2an 596 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt 𝑚) ∈ ℕ0)
2016adantr 481 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑃 ∈ ℙ)
2117adantl 482 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑚 ∈ ℕ)
2221nnzd 12425 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑚 ∈ ℤ)
238ad2antrr 723 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑃 ∈ ℤ)
24 simplr 766 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝐴 ∈ ℕ0)
25 zexpcl 13797 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
2623, 24, 25syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃𝐴) ∈ ℤ)
27 breq1 5077 . . . . . . . 8 (𝑥 = 𝑚 → (𝑥 ∥ (𝑃𝐴) ↔ 𝑚 ∥ (𝑃𝐴)))
2827elrab 3624 . . . . . . 7 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)} ↔ (𝑚 ∈ ℕ ∧ 𝑚 ∥ (𝑃𝐴)))
2928simprbi 497 . . . . . 6 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)} → 𝑚 ∥ (𝑃𝐴))
3029adantl 482 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑚 ∥ (𝑃𝐴))
31 pcdvdstr 16577 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑚 ∈ ℤ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝑚 ∥ (𝑃𝐴))) → (𝑃 pCnt 𝑚) ≤ (𝑃 pCnt (𝑃𝐴)))
3220, 22, 26, 30, 31syl13anc 1371 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt 𝑚) ≤ (𝑃 pCnt (𝑃𝐴)))
33 pcidlem 16573 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
3433adantr 481 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
3532, 34breqtrd 5100 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt 𝑚) ≤ 𝐴)
36 fznn0 13348 . . . 4 (𝐴 ∈ ℕ0 → ((𝑃 pCnt 𝑚) ∈ (0...𝐴) ↔ ((𝑃 pCnt 𝑚) ∈ ℕ0 ∧ (𝑃 pCnt 𝑚) ≤ 𝐴)))
3724, 36syl 17 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → ((𝑃 pCnt 𝑚) ∈ (0...𝐴) ↔ ((𝑃 pCnt 𝑚) ∈ ℕ0 ∧ (𝑃 pCnt 𝑚) ≤ 𝐴)))
3819, 35, 37mpbir2and 710 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (𝑃 pCnt 𝑚) ∈ (0...𝐴))
39 oveq2 7283 . . . . . . . . 9 (𝑛 = 𝐴 → (𝑃𝑛) = (𝑃𝐴))
4039breq2d 5086 . . . . . . . 8 (𝑛 = 𝐴 → (𝑚 ∥ (𝑃𝑛) ↔ 𝑚 ∥ (𝑃𝐴)))
4140rspcev 3561 . . . . . . 7 ((𝐴 ∈ ℕ0𝑚 ∥ (𝑃𝐴)) → ∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃𝑛))
4224, 30, 41syl2anc 584 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → ∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃𝑛))
43 pcprmpw2 16583 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ ℕ) → (∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃𝑛) ↔ 𝑚 = (𝑃↑(𝑃 pCnt 𝑚))))
4416, 17, 43syl2an 596 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → (∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃𝑛) ↔ 𝑚 = (𝑃↑(𝑃 pCnt 𝑚))))
4542, 44mpbid 231 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)}) → 𝑚 = (𝑃↑(𝑃 pCnt 𝑚)))
4645adantrl 713 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → 𝑚 = (𝑃↑(𝑃 pCnt 𝑚)))
47 oveq2 7283 . . . . 5 (𝑛 = (𝑃 pCnt 𝑚) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt 𝑚)))
4847eqeq2d 2749 . . . 4 (𝑛 = (𝑃 pCnt 𝑚) → (𝑚 = (𝑃𝑛) ↔ 𝑚 = (𝑃↑(𝑃 pCnt 𝑚))))
4946, 48syl5ibrcom 246 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → (𝑛 = (𝑃 pCnt 𝑚) → 𝑚 = (𝑃𝑛)))
50 elfzelz 13256 . . . . . . 7 (𝑛 ∈ (0...𝐴) → 𝑛 ∈ ℤ)
51 pcid 16574 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℤ) → (𝑃 pCnt (𝑃𝑛)) = 𝑛)
5216, 50, 51syl2an 596 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → (𝑃 pCnt (𝑃𝑛)) = 𝑛)
5352eqcomd 2744 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ 𝑛 ∈ (0...𝐴)) → 𝑛 = (𝑃 pCnt (𝑃𝑛)))
5453adantrr 714 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → 𝑛 = (𝑃 pCnt (𝑃𝑛)))
55 oveq2 7283 . . . . 5 (𝑚 = (𝑃𝑛) → (𝑃 pCnt 𝑚) = (𝑃 pCnt (𝑃𝑛)))
5655eqeq2d 2749 . . . 4 (𝑚 = (𝑃𝑛) → (𝑛 = (𝑃 pCnt 𝑚) ↔ 𝑛 = (𝑃 pCnt (𝑃𝑛))))
5754, 56syl5ibrcom 246 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → (𝑚 = (𝑃𝑛) → 𝑛 = (𝑃 pCnt 𝑚)))
5849, 57impbid 211 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) ∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})) → (𝑛 = (𝑃 pCnt 𝑚) ↔ 𝑚 = (𝑃𝑛)))
591, 15, 38, 58f1o2d 7523 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐹:(0...𝐴)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  {crab 3068   class class class wbr 5074  cmpt 5157  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  0cc0 10871  cle 11010  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  cexp 13782  cdvds 15963  cprime 16376   pCnt cpc 16537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538
This theorem is referenced by:  sgmppw  26345  0sgmppw  26346  dchrisum0flblem1  26656
  Copyright terms: Public domain W3C validator