Step | Hyp | Ref
| Expression |
1 | | dvdsppwf1o.f |
. 2
⊢ 𝐹 = (𝑛 ∈ (0...𝐴) ↦ (𝑃↑𝑛)) |
2 | | breq1 5077 |
. . 3
⊢ (𝑥 = (𝑃↑𝑛) → (𝑥 ∥ (𝑃↑𝐴) ↔ (𝑃↑𝑛) ∥ (𝑃↑𝐴))) |
3 | | prmnn 16379 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
4 | 3 | adantr 481 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
→ 𝑃 ∈
ℕ) |
5 | | elfznn0 13349 |
. . . 4
⊢ (𝑛 ∈ (0...𝐴) → 𝑛 ∈ ℕ0) |
6 | | nnexpcl 13795 |
. . . 4
⊢ ((𝑃 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ (𝑃↑𝑛) ∈
ℕ) |
7 | 4, 5, 6 | syl2an 596 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑛 ∈ (0...𝐴)) → (𝑃↑𝑛) ∈ ℕ) |
8 | | prmz 16380 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
9 | 8 | ad2antrr 723 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑛 ∈ (0...𝐴)) → 𝑃 ∈ ℤ) |
10 | 5 | adantl 482 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑛 ∈ (0...𝐴)) → 𝑛 ∈ ℕ0) |
11 | | elfzuz3 13253 |
. . . . 5
⊢ (𝑛 ∈ (0...𝐴) → 𝐴 ∈ (ℤ≥‘𝑛)) |
12 | 11 | adantl 482 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑛 ∈ (0...𝐴)) → 𝐴 ∈ (ℤ≥‘𝑛)) |
13 | | dvdsexp 16037 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0
∧ 𝐴 ∈
(ℤ≥‘𝑛)) → (𝑃↑𝑛) ∥ (𝑃↑𝐴)) |
14 | 9, 10, 12, 13 | syl3anc 1370 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑛 ∈ (0...𝐴)) → (𝑃↑𝑛) ∥ (𝑃↑𝐴)) |
15 | 2, 7, 14 | elrabd 3626 |
. 2
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑛 ∈ (0...𝐴)) → (𝑃↑𝑛) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) |
16 | | simpl 483 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
→ 𝑃 ∈
ℙ) |
17 | | elrabi 3618 |
. . . 4
⊢ (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)} → 𝑚 ∈ ℕ) |
18 | | pccl 16550 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑚 ∈ ℕ) → (𝑃 pCnt 𝑚) ∈
ℕ0) |
19 | 16, 17, 18 | syl2an 596 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → (𝑃 pCnt 𝑚) ∈
ℕ0) |
20 | 16 | adantr 481 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → 𝑃 ∈ ℙ) |
21 | 17 | adantl 482 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → 𝑚 ∈ ℕ) |
22 | 21 | nnzd 12425 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → 𝑚 ∈ ℤ) |
23 | 8 | ad2antrr 723 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → 𝑃 ∈ ℤ) |
24 | | simplr 766 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → 𝐴 ∈
ℕ0) |
25 | | zexpcl 13797 |
. . . . . 6
⊢ ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0)
→ (𝑃↑𝐴) ∈
ℤ) |
26 | 23, 24, 25 | syl2anc 584 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → (𝑃↑𝐴) ∈ ℤ) |
27 | | breq1 5077 |
. . . . . . . 8
⊢ (𝑥 = 𝑚 → (𝑥 ∥ (𝑃↑𝐴) ↔ 𝑚 ∥ (𝑃↑𝐴))) |
28 | 27 | elrab 3624 |
. . . . . . 7
⊢ (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)} ↔ (𝑚 ∈ ℕ ∧ 𝑚 ∥ (𝑃↑𝐴))) |
29 | 28 | simprbi 497 |
. . . . . 6
⊢ (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)} → 𝑚 ∥ (𝑃↑𝐴)) |
30 | 29 | adantl 482 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → 𝑚 ∥ (𝑃↑𝐴)) |
31 | | pcdvdstr 16577 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑚 ∈ ℤ ∧ (𝑃↑𝐴) ∈ ℤ ∧ 𝑚 ∥ (𝑃↑𝐴))) → (𝑃 pCnt 𝑚) ≤ (𝑃 pCnt (𝑃↑𝐴))) |
32 | 20, 22, 26, 30, 31 | syl13anc 1371 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → (𝑃 pCnt 𝑚) ≤ (𝑃 pCnt (𝑃↑𝐴))) |
33 | | pcidlem 16573 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
→ (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
34 | 33 | adantr 481 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
35 | 32, 34 | breqtrd 5100 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → (𝑃 pCnt 𝑚) ≤ 𝐴) |
36 | | fznn0 13348 |
. . . 4
⊢ (𝐴 ∈ ℕ0
→ ((𝑃 pCnt 𝑚) ∈ (0...𝐴) ↔ ((𝑃 pCnt 𝑚) ∈ ℕ0 ∧ (𝑃 pCnt 𝑚) ≤ 𝐴))) |
37 | 24, 36 | syl 17 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → ((𝑃 pCnt 𝑚) ∈ (0...𝐴) ↔ ((𝑃 pCnt 𝑚) ∈ ℕ0 ∧ (𝑃 pCnt 𝑚) ≤ 𝐴))) |
38 | 19, 35, 37 | mpbir2and 710 |
. 2
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → (𝑃 pCnt 𝑚) ∈ (0...𝐴)) |
39 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑛 = 𝐴 → (𝑃↑𝑛) = (𝑃↑𝐴)) |
40 | 39 | breq2d 5086 |
. . . . . . . 8
⊢ (𝑛 = 𝐴 → (𝑚 ∥ (𝑃↑𝑛) ↔ 𝑚 ∥ (𝑃↑𝐴))) |
41 | 40 | rspcev 3561 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ0
∧ 𝑚 ∥ (𝑃↑𝐴)) → ∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃↑𝑛)) |
42 | 24, 30, 41 | syl2anc 584 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → ∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃↑𝑛)) |
43 | | pcprmpw2 16583 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑚 ∈ ℕ) →
(∃𝑛 ∈
ℕ0 𝑚
∥ (𝑃↑𝑛) ↔ 𝑚 = (𝑃↑(𝑃 pCnt 𝑚)))) |
44 | 16, 17, 43 | syl2an 596 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → (∃𝑛 ∈ ℕ0 𝑚 ∥ (𝑃↑𝑛) ↔ 𝑚 = (𝑃↑(𝑃 pCnt 𝑚)))) |
45 | 42, 44 | mpbid 231 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) → 𝑚 = (𝑃↑(𝑃 pCnt 𝑚))) |
46 | 45 | adantrl 713 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)})) → 𝑚 = (𝑃↑(𝑃 pCnt 𝑚))) |
47 | | oveq2 7283 |
. . . . 5
⊢ (𝑛 = (𝑃 pCnt 𝑚) → (𝑃↑𝑛) = (𝑃↑(𝑃 pCnt 𝑚))) |
48 | 47 | eqeq2d 2749 |
. . . 4
⊢ (𝑛 = (𝑃 pCnt 𝑚) → (𝑚 = (𝑃↑𝑛) ↔ 𝑚 = (𝑃↑(𝑃 pCnt 𝑚)))) |
49 | 46, 48 | syl5ibrcom 246 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)})) → (𝑛 = (𝑃 pCnt 𝑚) → 𝑚 = (𝑃↑𝑛))) |
50 | | elfzelz 13256 |
. . . . . . 7
⊢ (𝑛 ∈ (0...𝐴) → 𝑛 ∈ ℤ) |
51 | | pcid 16574 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑛 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝑛)) = 𝑛) |
52 | 16, 50, 51 | syl2an 596 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑛 ∈ (0...𝐴)) → (𝑃 pCnt (𝑃↑𝑛)) = 𝑛) |
53 | 52 | eqcomd 2744 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ 𝑛 ∈ (0...𝐴)) → 𝑛 = (𝑃 pCnt (𝑃↑𝑛))) |
54 | 53 | adantrr 714 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)})) → 𝑛 = (𝑃 pCnt (𝑃↑𝑛))) |
55 | | oveq2 7283 |
. . . . 5
⊢ (𝑚 = (𝑃↑𝑛) → (𝑃 pCnt 𝑚) = (𝑃 pCnt (𝑃↑𝑛))) |
56 | 55 | eqeq2d 2749 |
. . . 4
⊢ (𝑚 = (𝑃↑𝑛) → (𝑛 = (𝑃 pCnt 𝑚) ↔ 𝑛 = (𝑃 pCnt (𝑃↑𝑛)))) |
57 | 54, 56 | syl5ibrcom 246 |
. . 3
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)})) → (𝑚 = (𝑃↑𝑛) → 𝑛 = (𝑃 pCnt 𝑚))) |
58 | 49, 57 | impbid 211 |
. 2
⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
∧ (𝑛 ∈ (0...𝐴) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)})) → (𝑛 = (𝑃 pCnt 𝑚) ↔ 𝑚 = (𝑃↑𝑛))) |
59 | 1, 15, 38, 58 | f1o2d 7523 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0)
→ 𝐹:(0...𝐴)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝐴)}) |