MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem22 Structured version   Visualization version   GIF version

Theorem fin23lem22 10218
Description: Lemma for fin23 10280 but could be used elsewhere if we find a good name for it. Explicit construction of a bijection (actually an isomorphism, see fin23lem27 10219) between an infinite subset of ω and ω itself. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem22.b 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
Assertion
Ref Expression
fin23lem22 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
Distinct variable group:   𝑖,𝑗,𝑆
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem fin23lem22
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fin23lem22.b . 2 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
2 fin23lem23 10217 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
3 riotacl 7320 . . 3 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) ∈ 𝑆)
42, 3syl 17 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) ∈ 𝑆)
5 simpll 766 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑆 ⊆ ω)
6 simpr 484 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑎𝑆)
75, 6sseldd 3930 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑎 ∈ ω)
8 nnfi 9077 . . 3 (𝑎 ∈ ω → 𝑎 ∈ Fin)
9 infi 9154 . . 3 (𝑎 ∈ Fin → (𝑎𝑆) ∈ Fin)
10 ficardom 9854 . . 3 ((𝑎𝑆) ∈ Fin → (card‘(𝑎𝑆)) ∈ ω)
117, 8, 9, 104syl 19 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → (card‘(𝑎𝑆)) ∈ ω)
12 cardnn 9856 . . . . . . 7 (𝑖 ∈ ω → (card‘𝑖) = 𝑖)
1312eqcomd 2737 . . . . . 6 (𝑖 ∈ ω → 𝑖 = (card‘𝑖))
1413eqeq1d 2733 . . . . 5 (𝑖 ∈ ω → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘𝑖) = (card‘(𝑎𝑆))))
15 eqcom 2738 . . . . 5 ((card‘𝑖) = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖))
1614, 15bitrdi 287 . . . 4 (𝑖 ∈ ω → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖)))
1716ad2antrl 728 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖)))
18 simpll 766 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑆 ⊆ ω)
19 simprr 772 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎𝑆)
2018, 19sseldd 3930 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎 ∈ ω)
21 nnon 7802 . . . . . 6 (𝑎 ∈ ω → 𝑎 ∈ On)
22 onenon 9842 . . . . . 6 (𝑎 ∈ On → 𝑎 ∈ dom card)
2320, 21, 223syl 18 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎 ∈ dom card)
24 inss1 4184 . . . . 5 (𝑎𝑆) ⊆ 𝑎
25 ssnum 9930 . . . . 5 ((𝑎 ∈ dom card ∧ (𝑎𝑆) ⊆ 𝑎) → (𝑎𝑆) ∈ dom card)
2623, 24, 25sylancl 586 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑎𝑆) ∈ dom card)
27 nnon 7802 . . . . . 6 (𝑖 ∈ ω → 𝑖 ∈ On)
2827ad2antrl 728 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑖 ∈ On)
29 onenon 9842 . . . . 5 (𝑖 ∈ On → 𝑖 ∈ dom card)
3028, 29syl 17 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑖 ∈ dom card)
31 carden2 9880 . . . 4 (((𝑎𝑆) ∈ dom card ∧ 𝑖 ∈ dom card) → ((card‘(𝑎𝑆)) = (card‘𝑖) ↔ (𝑎𝑆) ≈ 𝑖))
3226, 30, 31syl2anc 584 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((card‘(𝑎𝑆)) = (card‘𝑖) ↔ (𝑎𝑆) ≈ 𝑖))
332adantrr 717 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
34 ineq1 4160 . . . . . . 7 (𝑗 = 𝑎 → (𝑗𝑆) = (𝑎𝑆))
3534breq1d 5099 . . . . . 6 (𝑗 = 𝑎 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑎𝑆) ≈ 𝑖))
3635riota2 7328 . . . . 5 ((𝑎𝑆 ∧ ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖) → ((𝑎𝑆) ≈ 𝑖 ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎))
3719, 33, 36syl2anc 584 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((𝑎𝑆) ≈ 𝑖 ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎))
38 eqcom 2738 . . . 4 ((𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
3937, 38bitrdi 287 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((𝑎𝑆) ≈ 𝑖𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖)))
4017, 32, 393bitrd 305 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑖 = (card‘(𝑎𝑆)) ↔ 𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖)))
411, 4, 11, 40f1o2d 7600 1 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ∃!wreu 3344  cin 3896  wss 3897   class class class wbr 5089  cmpt 5170  dom cdm 5614  Oncon0 6306  1-1-ontowf1o 6480  cfv 6481  crio 7302  ωcom 7796  cen 8866  Fincfn 8869  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832
This theorem is referenced by:  fin23lem27  10219  fin23lem28  10231  fin23lem30  10233  isf32lem6  10249  isf32lem7  10250  isf32lem8  10251
  Copyright terms: Public domain W3C validator