Step | Hyp | Ref
| Expression |
1 | | fin23lem22.b |
. 2
⊢ 𝐶 = (𝑖 ∈ ω ↦ (℩𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖)) |
2 | | fin23lem23 10013 |
. . 3
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) →
∃!𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖) |
3 | | riotacl 7230 |
. . 3
⊢
(∃!𝑗 ∈
𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖 → (℩𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖) ∈ 𝑆) |
4 | 2, 3 | syl 17 |
. 2
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) →
(℩𝑗 ∈
𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖) ∈ 𝑆) |
5 | | simpll 763 |
. . . 4
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ 𝑎 ∈ 𝑆) → 𝑆 ⊆ ω) |
6 | | simpr 484 |
. . . 4
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ 𝑆) |
7 | 5, 6 | sseldd 3918 |
. . 3
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ω) |
8 | | nnfi 8912 |
. . 3
⊢ (𝑎 ∈ ω → 𝑎 ∈ Fin) |
9 | | infi 8972 |
. . 3
⊢ (𝑎 ∈ Fin → (𝑎 ∩ 𝑆) ∈ Fin) |
10 | | ficardom 9650 |
. . 3
⊢ ((𝑎 ∩ 𝑆) ∈ Fin → (card‘(𝑎 ∩ 𝑆)) ∈ ω) |
11 | 7, 8, 9, 10 | 4syl 19 |
. 2
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ 𝑎 ∈ 𝑆) → (card‘(𝑎 ∩ 𝑆)) ∈ ω) |
12 | | cardnn 9652 |
. . . . . . 7
⊢ (𝑖 ∈ ω →
(card‘𝑖) = 𝑖) |
13 | 12 | eqcomd 2744 |
. . . . . 6
⊢ (𝑖 ∈ ω → 𝑖 = (card‘𝑖)) |
14 | 13 | eqeq1d 2740 |
. . . . 5
⊢ (𝑖 ∈ ω → (𝑖 = (card‘(𝑎 ∩ 𝑆)) ↔ (card‘𝑖) = (card‘(𝑎 ∩ 𝑆)))) |
15 | | eqcom 2745 |
. . . . 5
⊢
((card‘𝑖) =
(card‘(𝑎 ∩ 𝑆)) ↔ (card‘(𝑎 ∩ 𝑆)) = (card‘𝑖)) |
16 | 14, 15 | bitrdi 286 |
. . . 4
⊢ (𝑖 ∈ ω → (𝑖 = (card‘(𝑎 ∩ 𝑆)) ↔ (card‘(𝑎 ∩ 𝑆)) = (card‘𝑖))) |
17 | 16 | ad2antrl 724 |
. . 3
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → (𝑖 = (card‘(𝑎 ∩ 𝑆)) ↔ (card‘(𝑎 ∩ 𝑆)) = (card‘𝑖))) |
18 | | simpll 763 |
. . . . . . 7
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → 𝑆 ⊆ ω) |
19 | | simprr 769 |
. . . . . . 7
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → 𝑎 ∈ 𝑆) |
20 | 18, 19 | sseldd 3918 |
. . . . . 6
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → 𝑎 ∈ ω) |
21 | | nnon 7693 |
. . . . . 6
⊢ (𝑎 ∈ ω → 𝑎 ∈ On) |
22 | | onenon 9638 |
. . . . . 6
⊢ (𝑎 ∈ On → 𝑎 ∈ dom
card) |
23 | 20, 21, 22 | 3syl 18 |
. . . . 5
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → 𝑎 ∈ dom card) |
24 | | inss1 4159 |
. . . . 5
⊢ (𝑎 ∩ 𝑆) ⊆ 𝑎 |
25 | | ssnum 9726 |
. . . . 5
⊢ ((𝑎 ∈ dom card ∧ (𝑎 ∩ 𝑆) ⊆ 𝑎) → (𝑎 ∩ 𝑆) ∈ dom card) |
26 | 23, 24, 25 | sylancl 585 |
. . . 4
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → (𝑎 ∩ 𝑆) ∈ dom card) |
27 | | nnon 7693 |
. . . . . 6
⊢ (𝑖 ∈ ω → 𝑖 ∈ On) |
28 | 27 | ad2antrl 724 |
. . . . 5
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → 𝑖 ∈ On) |
29 | | onenon 9638 |
. . . . 5
⊢ (𝑖 ∈ On → 𝑖 ∈ dom
card) |
30 | 28, 29 | syl 17 |
. . . 4
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → 𝑖 ∈ dom card) |
31 | | carden2 9676 |
. . . 4
⊢ (((𝑎 ∩ 𝑆) ∈ dom card ∧ 𝑖 ∈ dom card) → ((card‘(𝑎 ∩ 𝑆)) = (card‘𝑖) ↔ (𝑎 ∩ 𝑆) ≈ 𝑖)) |
32 | 26, 30, 31 | syl2anc 583 |
. . 3
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → ((card‘(𝑎 ∩ 𝑆)) = (card‘𝑖) ↔ (𝑎 ∩ 𝑆) ≈ 𝑖)) |
33 | 2 | adantrr 713 |
. . . . 5
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → ∃!𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖) |
34 | | ineq1 4136 |
. . . . . . 7
⊢ (𝑗 = 𝑎 → (𝑗 ∩ 𝑆) = (𝑎 ∩ 𝑆)) |
35 | 34 | breq1d 5080 |
. . . . . 6
⊢ (𝑗 = 𝑎 → ((𝑗 ∩ 𝑆) ≈ 𝑖 ↔ (𝑎 ∩ 𝑆) ≈ 𝑖)) |
36 | 35 | riota2 7238 |
. . . . 5
⊢ ((𝑎 ∈ 𝑆 ∧ ∃!𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖) → ((𝑎 ∩ 𝑆) ≈ 𝑖 ↔ (℩𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖) = 𝑎)) |
37 | 19, 33, 36 | syl2anc 583 |
. . . 4
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → ((𝑎 ∩ 𝑆) ≈ 𝑖 ↔ (℩𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖) = 𝑎)) |
38 | | eqcom 2745 |
. . . 4
⊢
((℩𝑗
∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖) = 𝑎 ↔ 𝑎 = (℩𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖)) |
39 | 37, 38 | bitrdi 286 |
. . 3
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → ((𝑎 ∩ 𝑆) ≈ 𝑖 ↔ 𝑎 = (℩𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖))) |
40 | 17, 32, 39 | 3bitrd 304 |
. 2
⊢ (((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎 ∈ 𝑆)) → (𝑖 = (card‘(𝑎 ∩ 𝑆)) ↔ 𝑎 = (℩𝑗 ∈ 𝑆 (𝑗 ∩ 𝑆) ≈ 𝑖))) |
41 | 1, 4, 11, 40 | f1o2d 7501 |
1
⊢ ((𝑆 ⊆ ω ∧ ¬
𝑆 ∈ Fin) → 𝐶:ω–1-1-onto→𝑆) |