Step | Hyp | Ref
| Expression |
1 | | fin23lem22.b |
. 2
β’ πΆ = (π β Ο β¦ (β©π β π (π β© π) β π)) |
2 | | fin23lem23 10324 |
. . 3
β’ (((π β Ο β§ Β¬
π β Fin) β§ π β Ο) β
β!π β π (π β© π) β π) |
3 | | riotacl 7386 |
. . 3
β’
(β!π β
π (π β© π) β π β (β©π β π (π β© π) β π) β π) |
4 | 2, 3 | syl 17 |
. 2
β’ (((π β Ο β§ Β¬
π β Fin) β§ π β Ο) β
(β©π β
π (π β© π) β π) β π) |
5 | | simpll 764 |
. . . 4
β’ (((π β Ο β§ Β¬
π β Fin) β§ π β π) β π β Ο) |
6 | | simpr 484 |
. . . 4
β’ (((π β Ο β§ Β¬
π β Fin) β§ π β π) β π β π) |
7 | 5, 6 | sseldd 3984 |
. . 3
β’ (((π β Ο β§ Β¬
π β Fin) β§ π β π) β π β Ο) |
8 | | nnfi 9170 |
. . 3
β’ (π β Ο β π β Fin) |
9 | | infi 9271 |
. . 3
β’ (π β Fin β (π β© π) β Fin) |
10 | | ficardom 9959 |
. . 3
β’ ((π β© π) β Fin β (cardβ(π β© π)) β Ο) |
11 | 7, 8, 9, 10 | 4syl 19 |
. 2
β’ (((π β Ο β§ Β¬
π β Fin) β§ π β π) β (cardβ(π β© π)) β Ο) |
12 | | cardnn 9961 |
. . . . . . 7
β’ (π β Ο β
(cardβπ) = π) |
13 | 12 | eqcomd 2737 |
. . . . . 6
β’ (π β Ο β π = (cardβπ)) |
14 | 13 | eqeq1d 2733 |
. . . . 5
β’ (π β Ο β (π = (cardβ(π β© π)) β (cardβπ) = (cardβ(π β© π)))) |
15 | | eqcom 2738 |
. . . . 5
β’
((cardβπ) =
(cardβ(π β© π)) β (cardβ(π β© π)) = (cardβπ)) |
16 | 14, 15 | bitrdi 286 |
. . . 4
β’ (π β Ο β (π = (cardβ(π β© π)) β (cardβ(π β© π)) = (cardβπ))) |
17 | 16 | ad2antrl 725 |
. . 3
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β (π = (cardβ(π β© π)) β (cardβ(π β© π)) = (cardβπ))) |
18 | | simpll 764 |
. . . . . . 7
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β π β Ο) |
19 | | simprr 770 |
. . . . . . 7
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β π β π) |
20 | 18, 19 | sseldd 3984 |
. . . . . 6
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β π β Ο) |
21 | | nnon 7864 |
. . . . . 6
β’ (π β Ο β π β On) |
22 | | onenon 9947 |
. . . . . 6
β’ (π β On β π β dom
card) |
23 | 20, 21, 22 | 3syl 18 |
. . . . 5
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β π β dom card) |
24 | | inss1 4229 |
. . . . 5
β’ (π β© π) β π |
25 | | ssnum 10037 |
. . . . 5
β’ ((π β dom card β§ (π β© π) β π) β (π β© π) β dom card) |
26 | 23, 24, 25 | sylancl 585 |
. . . 4
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β (π β© π) β dom card) |
27 | | nnon 7864 |
. . . . . 6
β’ (π β Ο β π β On) |
28 | 27 | ad2antrl 725 |
. . . . 5
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β π β On) |
29 | | onenon 9947 |
. . . . 5
β’ (π β On β π β dom
card) |
30 | 28, 29 | syl 17 |
. . . 4
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β π β dom card) |
31 | | carden2 9985 |
. . . 4
β’ (((π β© π) β dom card β§ π β dom card) β ((cardβ(π β© π)) = (cardβπ) β (π β© π) β π)) |
32 | 26, 30, 31 | syl2anc 583 |
. . 3
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β ((cardβ(π β© π)) = (cardβπ) β (π β© π) β π)) |
33 | 2 | adantrr 714 |
. . . . 5
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β β!π β π (π β© π) β π) |
34 | | ineq1 4206 |
. . . . . . 7
β’ (π = π β (π β© π) = (π β© π)) |
35 | 34 | breq1d 5159 |
. . . . . 6
β’ (π = π β ((π β© π) β π β (π β© π) β π)) |
36 | 35 | riota2 7394 |
. . . . 5
β’ ((π β π β§ β!π β π (π β© π) β π) β ((π β© π) β π β (β©π β π (π β© π) β π) = π)) |
37 | 19, 33, 36 | syl2anc 583 |
. . . 4
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β ((π β© π) β π β (β©π β π (π β© π) β π) = π)) |
38 | | eqcom 2738 |
. . . 4
β’
((β©π
β π (π β© π) β π) = π β π = (β©π β π (π β© π) β π)) |
39 | 37, 38 | bitrdi 286 |
. . 3
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β ((π β© π) β π β π = (β©π β π (π β© π) β π))) |
40 | 17, 32, 39 | 3bitrd 304 |
. 2
β’ (((π β Ο β§ Β¬
π β Fin) β§ (π β Ο β§ π β π)) β (π = (cardβ(π β© π)) β π = (β©π β π (π β© π) β π))) |
41 | 1, 4, 11, 40 | f1o2d 7663 |
1
β’ ((π β Ο β§ Β¬
π β Fin) β πΆ:Οβ1-1-ontoβπ) |