MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem22 Structured version   Visualization version   GIF version

Theorem fin23lem22 10396
Description: Lemma for fin23 10458 but could be used elsewhere if we find a good name for it. Explicit construction of a bijection (actually an isomorphism, see fin23lem27 10397) between an infinite subset of ω and ω itself. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem22.b 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
Assertion
Ref Expression
fin23lem22 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
Distinct variable group:   𝑖,𝑗,𝑆
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem fin23lem22
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fin23lem22.b . 2 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
2 fin23lem23 10395 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
3 riotacl 7422 . . 3 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) ∈ 𝑆)
42, 3syl 17 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) ∈ 𝑆)
5 simpll 766 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑆 ⊆ ω)
6 simpr 484 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑎𝑆)
75, 6sseldd 4009 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑎 ∈ ω)
8 nnfi 9233 . . 3 (𝑎 ∈ ω → 𝑎 ∈ Fin)
9 infi 9330 . . 3 (𝑎 ∈ Fin → (𝑎𝑆) ∈ Fin)
10 ficardom 10030 . . 3 ((𝑎𝑆) ∈ Fin → (card‘(𝑎𝑆)) ∈ ω)
117, 8, 9, 104syl 19 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → (card‘(𝑎𝑆)) ∈ ω)
12 cardnn 10032 . . . . . . 7 (𝑖 ∈ ω → (card‘𝑖) = 𝑖)
1312eqcomd 2746 . . . . . 6 (𝑖 ∈ ω → 𝑖 = (card‘𝑖))
1413eqeq1d 2742 . . . . 5 (𝑖 ∈ ω → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘𝑖) = (card‘(𝑎𝑆))))
15 eqcom 2747 . . . . 5 ((card‘𝑖) = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖))
1614, 15bitrdi 287 . . . 4 (𝑖 ∈ ω → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖)))
1716ad2antrl 727 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖)))
18 simpll 766 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑆 ⊆ ω)
19 simprr 772 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎𝑆)
2018, 19sseldd 4009 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎 ∈ ω)
21 nnon 7909 . . . . . 6 (𝑎 ∈ ω → 𝑎 ∈ On)
22 onenon 10018 . . . . . 6 (𝑎 ∈ On → 𝑎 ∈ dom card)
2320, 21, 223syl 18 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎 ∈ dom card)
24 inss1 4258 . . . . 5 (𝑎𝑆) ⊆ 𝑎
25 ssnum 10108 . . . . 5 ((𝑎 ∈ dom card ∧ (𝑎𝑆) ⊆ 𝑎) → (𝑎𝑆) ∈ dom card)
2623, 24, 25sylancl 585 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑎𝑆) ∈ dom card)
27 nnon 7909 . . . . . 6 (𝑖 ∈ ω → 𝑖 ∈ On)
2827ad2antrl 727 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑖 ∈ On)
29 onenon 10018 . . . . 5 (𝑖 ∈ On → 𝑖 ∈ dom card)
3028, 29syl 17 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑖 ∈ dom card)
31 carden2 10056 . . . 4 (((𝑎𝑆) ∈ dom card ∧ 𝑖 ∈ dom card) → ((card‘(𝑎𝑆)) = (card‘𝑖) ↔ (𝑎𝑆) ≈ 𝑖))
3226, 30, 31syl2anc 583 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((card‘(𝑎𝑆)) = (card‘𝑖) ↔ (𝑎𝑆) ≈ 𝑖))
332adantrr 716 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
34 ineq1 4234 . . . . . . 7 (𝑗 = 𝑎 → (𝑗𝑆) = (𝑎𝑆))
3534breq1d 5176 . . . . . 6 (𝑗 = 𝑎 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑎𝑆) ≈ 𝑖))
3635riota2 7430 . . . . 5 ((𝑎𝑆 ∧ ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖) → ((𝑎𝑆) ≈ 𝑖 ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎))
3719, 33, 36syl2anc 583 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((𝑎𝑆) ≈ 𝑖 ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎))
38 eqcom 2747 . . . 4 ((𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
3937, 38bitrdi 287 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((𝑎𝑆) ≈ 𝑖𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖)))
4017, 32, 393bitrd 305 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑖 = (card‘(𝑎𝑆)) ↔ 𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖)))
411, 4, 11, 40f1o2d 7704 1 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  ∃!wreu 3386  cin 3975  wss 3976   class class class wbr 5166  cmpt 5249  dom cdm 5700  Oncon0 6395  1-1-ontowf1o 6572  cfv 6573  crio 7403  ωcom 7903  cen 9000  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008
This theorem is referenced by:  fin23lem27  10397  fin23lem28  10409  fin23lem30  10411  isf32lem6  10427  isf32lem7  10428  isf32lem8  10429
  Copyright terms: Public domain W3C validator