MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem22 Structured version   Visualization version   GIF version

Theorem fin23lem22 10221
Description: Lemma for fin23 10283 but could be used elsewhere if we find a good name for it. Explicit construction of a bijection (actually an isomorphism, see fin23lem27 10222) between an infinite subset of ω and ω itself. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem22.b 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
Assertion
Ref Expression
fin23lem22 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
Distinct variable group:   𝑖,𝑗,𝑆
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem fin23lem22
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fin23lem22.b . 2 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
2 fin23lem23 10220 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
3 riotacl 7323 . . 3 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) ∈ 𝑆)
42, 3syl 17 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) ∈ 𝑆)
5 simpll 766 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑆 ⊆ ω)
6 simpr 484 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑎𝑆)
75, 6sseldd 3936 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑎 ∈ ω)
8 nnfi 9081 . . 3 (𝑎 ∈ ω → 𝑎 ∈ Fin)
9 infi 9159 . . 3 (𝑎 ∈ Fin → (𝑎𝑆) ∈ Fin)
10 ficardom 9857 . . 3 ((𝑎𝑆) ∈ Fin → (card‘(𝑎𝑆)) ∈ ω)
117, 8, 9, 104syl 19 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → (card‘(𝑎𝑆)) ∈ ω)
12 cardnn 9859 . . . . . . 7 (𝑖 ∈ ω → (card‘𝑖) = 𝑖)
1312eqcomd 2735 . . . . . 6 (𝑖 ∈ ω → 𝑖 = (card‘𝑖))
1413eqeq1d 2731 . . . . 5 (𝑖 ∈ ω → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘𝑖) = (card‘(𝑎𝑆))))
15 eqcom 2736 . . . . 5 ((card‘𝑖) = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖))
1614, 15bitrdi 287 . . . 4 (𝑖 ∈ ω → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖)))
1716ad2antrl 728 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖)))
18 simpll 766 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑆 ⊆ ω)
19 simprr 772 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎𝑆)
2018, 19sseldd 3936 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎 ∈ ω)
21 nnon 7805 . . . . . 6 (𝑎 ∈ ω → 𝑎 ∈ On)
22 onenon 9845 . . . . . 6 (𝑎 ∈ On → 𝑎 ∈ dom card)
2320, 21, 223syl 18 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎 ∈ dom card)
24 inss1 4188 . . . . 5 (𝑎𝑆) ⊆ 𝑎
25 ssnum 9933 . . . . 5 ((𝑎 ∈ dom card ∧ (𝑎𝑆) ⊆ 𝑎) → (𝑎𝑆) ∈ dom card)
2623, 24, 25sylancl 586 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑎𝑆) ∈ dom card)
27 nnon 7805 . . . . . 6 (𝑖 ∈ ω → 𝑖 ∈ On)
2827ad2antrl 728 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑖 ∈ On)
29 onenon 9845 . . . . 5 (𝑖 ∈ On → 𝑖 ∈ dom card)
3028, 29syl 17 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑖 ∈ dom card)
31 carden2 9883 . . . 4 (((𝑎𝑆) ∈ dom card ∧ 𝑖 ∈ dom card) → ((card‘(𝑎𝑆)) = (card‘𝑖) ↔ (𝑎𝑆) ≈ 𝑖))
3226, 30, 31syl2anc 584 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((card‘(𝑎𝑆)) = (card‘𝑖) ↔ (𝑎𝑆) ≈ 𝑖))
332adantrr 717 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
34 ineq1 4164 . . . . . . 7 (𝑗 = 𝑎 → (𝑗𝑆) = (𝑎𝑆))
3534breq1d 5102 . . . . . 6 (𝑗 = 𝑎 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑎𝑆) ≈ 𝑖))
3635riota2 7331 . . . . 5 ((𝑎𝑆 ∧ ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖) → ((𝑎𝑆) ≈ 𝑖 ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎))
3719, 33, 36syl2anc 584 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((𝑎𝑆) ≈ 𝑖 ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎))
38 eqcom 2736 . . . 4 ((𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
3937, 38bitrdi 287 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((𝑎𝑆) ≈ 𝑖𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖)))
4017, 32, 393bitrd 305 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑖 = (card‘(𝑎𝑆)) ↔ 𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖)))
411, 4, 11, 40f1o2d 7603 1 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3341  cin 3902  wss 3903   class class class wbr 5092  cmpt 5173  dom cdm 5619  Oncon0 6307  1-1-ontowf1o 6481  cfv 6482  crio 7305  ωcom 7799  cen 8869  Fincfn 8872  cardccrd 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835
This theorem is referenced by:  fin23lem27  10222  fin23lem28  10234  fin23lem30  10236  isf32lem6  10252  isf32lem7  10253  isf32lem8  10254
  Copyright terms: Public domain W3C validator