MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem22 Structured version   Visualization version   GIF version

Theorem fin23lem22 10367
Description: Lemma for fin23 10429 but could be used elsewhere if we find a good name for it. Explicit construction of a bijection (actually an isomorphism, see fin23lem27 10368) between an infinite subset of ω and ω itself. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem22.b 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
Assertion
Ref Expression
fin23lem22 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
Distinct variable group:   𝑖,𝑗,𝑆
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem fin23lem22
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 fin23lem22.b . 2 𝐶 = (𝑖 ∈ ω ↦ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
2 fin23lem23 10366 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
3 riotacl 7405 . . 3 (∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖 → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) ∈ 𝑆)
42, 3syl 17 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑖 ∈ ω) → (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) ∈ 𝑆)
5 simpll 767 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑆 ⊆ ω)
6 simpr 484 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑎𝑆)
75, 6sseldd 3984 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → 𝑎 ∈ ω)
8 nnfi 9207 . . 3 (𝑎 ∈ ω → 𝑎 ∈ Fin)
9 infi 9302 . . 3 (𝑎 ∈ Fin → (𝑎𝑆) ∈ Fin)
10 ficardom 10001 . . 3 ((𝑎𝑆) ∈ Fin → (card‘(𝑎𝑆)) ∈ ω)
117, 8, 9, 104syl 19 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ 𝑎𝑆) → (card‘(𝑎𝑆)) ∈ ω)
12 cardnn 10003 . . . . . . 7 (𝑖 ∈ ω → (card‘𝑖) = 𝑖)
1312eqcomd 2743 . . . . . 6 (𝑖 ∈ ω → 𝑖 = (card‘𝑖))
1413eqeq1d 2739 . . . . 5 (𝑖 ∈ ω → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘𝑖) = (card‘(𝑎𝑆))))
15 eqcom 2744 . . . . 5 ((card‘𝑖) = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖))
1614, 15bitrdi 287 . . . 4 (𝑖 ∈ ω → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖)))
1716ad2antrl 728 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑖 = (card‘(𝑎𝑆)) ↔ (card‘(𝑎𝑆)) = (card‘𝑖)))
18 simpll 767 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑆 ⊆ ω)
19 simprr 773 . . . . . . 7 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎𝑆)
2018, 19sseldd 3984 . . . . . 6 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎 ∈ ω)
21 nnon 7893 . . . . . 6 (𝑎 ∈ ω → 𝑎 ∈ On)
22 onenon 9989 . . . . . 6 (𝑎 ∈ On → 𝑎 ∈ dom card)
2320, 21, 223syl 18 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑎 ∈ dom card)
24 inss1 4237 . . . . 5 (𝑎𝑆) ⊆ 𝑎
25 ssnum 10079 . . . . 5 ((𝑎 ∈ dom card ∧ (𝑎𝑆) ⊆ 𝑎) → (𝑎𝑆) ∈ dom card)
2623, 24, 25sylancl 586 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑎𝑆) ∈ dom card)
27 nnon 7893 . . . . . 6 (𝑖 ∈ ω → 𝑖 ∈ On)
2827ad2antrl 728 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑖 ∈ On)
29 onenon 9989 . . . . 5 (𝑖 ∈ On → 𝑖 ∈ dom card)
3028, 29syl 17 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → 𝑖 ∈ dom card)
31 carden2 10027 . . . 4 (((𝑎𝑆) ∈ dom card ∧ 𝑖 ∈ dom card) → ((card‘(𝑎𝑆)) = (card‘𝑖) ↔ (𝑎𝑆) ≈ 𝑖))
3226, 30, 31syl2anc 584 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((card‘(𝑎𝑆)) = (card‘𝑖) ↔ (𝑎𝑆) ≈ 𝑖))
332adantrr 717 . . . . 5 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖)
34 ineq1 4213 . . . . . . 7 (𝑗 = 𝑎 → (𝑗𝑆) = (𝑎𝑆))
3534breq1d 5153 . . . . . 6 (𝑗 = 𝑎 → ((𝑗𝑆) ≈ 𝑖 ↔ (𝑎𝑆) ≈ 𝑖))
3635riota2 7413 . . . . 5 ((𝑎𝑆 ∧ ∃!𝑗𝑆 (𝑗𝑆) ≈ 𝑖) → ((𝑎𝑆) ≈ 𝑖 ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎))
3719, 33, 36syl2anc 584 . . . 4 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((𝑎𝑆) ≈ 𝑖 ↔ (𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎))
38 eqcom 2744 . . . 4 ((𝑗𝑆 (𝑗𝑆) ≈ 𝑖) = 𝑎𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖))
3937, 38bitrdi 287 . . 3 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → ((𝑎𝑆) ≈ 𝑖𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖)))
4017, 32, 393bitrd 305 . 2 (((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) ∧ (𝑖 ∈ ω ∧ 𝑎𝑆)) → (𝑖 = (card‘(𝑎𝑆)) ↔ 𝑎 = (𝑗𝑆 (𝑗𝑆) ≈ 𝑖)))
411, 4, 11, 40f1o2d 7687 1 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐶:ω–1-1-onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  ∃!wreu 3378  cin 3950  wss 3951   class class class wbr 5143  cmpt 5225  dom cdm 5685  Oncon0 6384  1-1-ontowf1o 6560  cfv 6561  crio 7387  ωcom 7887  cen 8982  Fincfn 8985  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979
This theorem is referenced by:  fin23lem27  10368  fin23lem28  10380  fin23lem30  10382  isf32lem6  10398  isf32lem7  10399  isf32lem8  10400
  Copyright terms: Public domain W3C validator