MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflip Structured version   Visualization version   GIF version

Theorem dvdsflip 16246
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
dvdsflip.a 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
dvdsflip.f 𝐹 = (𝑦𝐴 ↦ (𝑁 / 𝑦))
Assertion
Ref Expression
dvdsflip (𝑁 ∈ ℕ → 𝐹:𝐴1-1-onto𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem dvdsflip
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvdsflip.f . 2 𝐹 = (𝑦𝐴 ↦ (𝑁 / 𝑦))
2 dvdsflip.a . . . . 5 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
32eleq2i 2820 . . . 4 (𝑦𝐴𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4 dvdsdivcl 16245 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
53, 4sylan2b 594 . . 3 ((𝑁 ∈ ℕ ∧ 𝑦𝐴) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
65, 2eleqtrrdi 2839 . 2 ((𝑁 ∈ ℕ ∧ 𝑦𝐴) → (𝑁 / 𝑦) ∈ 𝐴)
72eleq2i 2820 . . . 4 (𝑧𝐴𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
8 dvdsdivcl 16245 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
97, 8sylan2b 594 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧𝐴) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
109, 2eleqtrrdi 2839 . 2 ((𝑁 ∈ ℕ ∧ 𝑧𝐴) → (𝑁 / 𝑧) ∈ 𝐴)
112ssrab3 4035 . . . . . 6 𝐴 ⊆ ℕ
1211sseli 3933 . . . . 5 (𝑦𝐴𝑦 ∈ ℕ)
1311sseli 3933 . . . . 5 (𝑧𝐴𝑧 ∈ ℕ)
1412, 13anim12i 613 . . . 4 ((𝑦𝐴𝑧𝐴) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
15 nncn 12154 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑁 ∈ ℂ)
17 nncn 12154 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
1817ad2antrl 728 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℂ)
19 nncn 12154 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
2019ad2antll 729 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℂ)
21 nnne0 12180 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
2221ad2antll 729 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ≠ 0)
2316, 18, 20, 22divmul3d 11952 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦𝑁 = (𝑦 · 𝑧)))
24 nnne0 12180 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
2524ad2antrl 728 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ≠ 0)
2616, 20, 18, 25divmul2d 11951 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑦) = 𝑧𝑁 = (𝑦 · 𝑧)))
2723, 26bitr4d 282 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧))
2814, 27sylan2 593 . . 3 ((𝑁 ∈ ℕ ∧ (𝑦𝐴𝑧𝐴)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧))
29 eqcom 2736 . . 3 (𝑦 = (𝑁 / 𝑧) ↔ (𝑁 / 𝑧) = 𝑦)
30 eqcom 2736 . . 3 (𝑧 = (𝑁 / 𝑦) ↔ (𝑁 / 𝑦) = 𝑧)
3128, 29, 303bitr4g 314 . 2 ((𝑁 ∈ ℕ ∧ (𝑦𝐴𝑧𝐴)) → (𝑦 = (𝑁 / 𝑧) ↔ 𝑧 = (𝑁 / 𝑦)))
321, 6, 10, 31f1o2d 7607 1 (𝑁 ∈ ℕ → 𝐹:𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3396   class class class wbr 5095  cmpt 5176  1-1-ontowf1o 6485  (class class class)co 7353  cc 11026  0cc0 11028   · cmul 11033   / cdiv 11795  cn 12146  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-z 12490  df-dvds 16182
This theorem is referenced by:  phisum  16720  fsumdvdscom  27111
  Copyright terms: Public domain W3C validator