MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflip Structured version   Visualization version   GIF version

Theorem dvdsflip 16350
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
dvdsflip.a 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
dvdsflip.f 𝐹 = (𝑦𝐴 ↦ (𝑁 / 𝑦))
Assertion
Ref Expression
dvdsflip (𝑁 ∈ ℕ → 𝐹:𝐴1-1-onto𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem dvdsflip
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvdsflip.f . 2 𝐹 = (𝑦𝐴 ↦ (𝑁 / 𝑦))
2 dvdsflip.a . . . . 5 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
32eleq2i 2830 . . . 4 (𝑦𝐴𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4 dvdsdivcl 16349 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
53, 4sylan2b 594 . . 3 ((𝑁 ∈ ℕ ∧ 𝑦𝐴) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
65, 2eleqtrrdi 2849 . 2 ((𝑁 ∈ ℕ ∧ 𝑦𝐴) → (𝑁 / 𝑦) ∈ 𝐴)
72eleq2i 2830 . . . 4 (𝑧𝐴𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
8 dvdsdivcl 16349 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
97, 8sylan2b 594 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧𝐴) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
109, 2eleqtrrdi 2849 . 2 ((𝑁 ∈ ℕ ∧ 𝑧𝐴) → (𝑁 / 𝑧) ∈ 𝐴)
112ssrab3 4091 . . . . . 6 𝐴 ⊆ ℕ
1211sseli 3990 . . . . 5 (𝑦𝐴𝑦 ∈ ℕ)
1311sseli 3990 . . . . 5 (𝑧𝐴𝑧 ∈ ℕ)
1412, 13anim12i 613 . . . 4 ((𝑦𝐴𝑧𝐴) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
15 nncn 12271 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑁 ∈ ℂ)
17 nncn 12271 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
1817ad2antrl 728 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℂ)
19 nncn 12271 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
2019ad2antll 729 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℂ)
21 nnne0 12297 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
2221ad2antll 729 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ≠ 0)
2316, 18, 20, 22divmul3d 12074 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦𝑁 = (𝑦 · 𝑧)))
24 nnne0 12297 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
2524ad2antrl 728 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ≠ 0)
2616, 20, 18, 25divmul2d 12073 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑦) = 𝑧𝑁 = (𝑦 · 𝑧)))
2723, 26bitr4d 282 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧))
2814, 27sylan2 593 . . 3 ((𝑁 ∈ ℕ ∧ (𝑦𝐴𝑧𝐴)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧))
29 eqcom 2741 . . 3 (𝑦 = (𝑁 / 𝑧) ↔ (𝑁 / 𝑧) = 𝑦)
30 eqcom 2741 . . 3 (𝑧 = (𝑁 / 𝑦) ↔ (𝑁 / 𝑦) = 𝑧)
3128, 29, 303bitr4g 314 . 2 ((𝑁 ∈ ℕ ∧ (𝑦𝐴𝑧𝐴)) → (𝑦 = (𝑁 / 𝑧) ↔ 𝑧 = (𝑁 / 𝑦)))
321, 6, 10, 31f1o2d 7686 1 (𝑁 ∈ ℕ → 𝐹:𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  {crab 3432   class class class wbr 5147  cmpt 5230  1-1-ontowf1o 6561  (class class class)co 7430  cc 11150  0cc0 11152   · cmul 11157   / cdiv 11917  cn 12263  cdvds 16286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-z 12611  df-dvds 16287
This theorem is referenced by:  phisum  16823  fsumdvdscom  27242
  Copyright terms: Public domain W3C validator