MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsflip Structured version   Visualization version   GIF version

Theorem dvdsflip 15878
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
dvdsflip.a 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
dvdsflip.f 𝐹 = (𝑦𝐴 ↦ (𝑁 / 𝑦))
Assertion
Ref Expression
dvdsflip (𝑁 ∈ ℕ → 𝐹:𝐴1-1-onto𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem dvdsflip
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvdsflip.f . 2 𝐹 = (𝑦𝐴 ↦ (𝑁 / 𝑦))
2 dvdsflip.a . . . . 5 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
32eleq2i 2829 . . . 4 (𝑦𝐴𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4 dvdsdivcl 15877 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
53, 4sylan2b 597 . . 3 ((𝑁 ∈ ℕ ∧ 𝑦𝐴) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
65, 2eleqtrrdi 2849 . 2 ((𝑁 ∈ ℕ ∧ 𝑦𝐴) → (𝑁 / 𝑦) ∈ 𝐴)
72eleq2i 2829 . . . 4 (𝑧𝐴𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
8 dvdsdivcl 15877 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
97, 8sylan2b 597 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧𝐴) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
109, 2eleqtrrdi 2849 . 2 ((𝑁 ∈ ℕ ∧ 𝑧𝐴) → (𝑁 / 𝑧) ∈ 𝐴)
112ssrab3 3995 . . . . . 6 𝐴 ⊆ ℕ
1211sseli 3896 . . . . 5 (𝑦𝐴𝑦 ∈ ℕ)
1311sseli 3896 . . . . 5 (𝑧𝐴𝑧 ∈ ℕ)
1412, 13anim12i 616 . . . 4 ((𝑦𝐴𝑧𝐴) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
15 nncn 11838 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1615adantr 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑁 ∈ ℂ)
17 nncn 11838 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
1817ad2antrl 728 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℂ)
19 nncn 11838 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
2019ad2antll 729 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℂ)
21 nnne0 11864 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ≠ 0)
2221ad2antll 729 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ≠ 0)
2316, 18, 20, 22divmul3d 11642 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦𝑁 = (𝑦 · 𝑧)))
24 nnne0 11864 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
2524ad2antrl 728 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ≠ 0)
2616, 20, 18, 25divmul2d 11641 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑦) = 𝑧𝑁 = (𝑦 · 𝑧)))
2723, 26bitr4d 285 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧))
2814, 27sylan2 596 . . 3 ((𝑁 ∈ ℕ ∧ (𝑦𝐴𝑧𝐴)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧))
29 eqcom 2744 . . 3 (𝑦 = (𝑁 / 𝑧) ↔ (𝑁 / 𝑧) = 𝑦)
30 eqcom 2744 . . 3 (𝑧 = (𝑁 / 𝑦) ↔ (𝑁 / 𝑦) = 𝑧)
3128, 29, 303bitr4g 317 . 2 ((𝑁 ∈ ℕ ∧ (𝑦𝐴𝑧𝐴)) → (𝑦 = (𝑁 / 𝑧) ↔ 𝑧 = (𝑁 / 𝑦)))
321, 6, 10, 31f1o2d 7459 1 (𝑁 ∈ ℕ → 𝐹:𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  {crab 3065   class class class wbr 5053  cmpt 5135  1-1-ontowf1o 6379  (class class class)co 7213  cc 10727  0cc0 10729   · cmul 10734   / cdiv 11489  cn 11830  cdvds 15815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-z 12177  df-dvds 15816
This theorem is referenced by:  phisum  16343  fsumdvdscom  26067
  Copyright terms: Public domain W3C validator