Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgcdlem Structured version   Visualization version   GIF version

Theorem hashgcdlem 16125
 Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
hashgcdlem.a 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
hashgcdlem.b 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁}
hashgcdlem.f 𝐹 = (𝑥𝐴 ↦ (𝑥 · 𝑁))
Assertion
Ref Expression
hashgcdlem ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑧,𝑀   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁,𝑦   𝑧,𝑁
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem hashgcdlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 hashgcdlem.f . 2 𝐹 = (𝑥𝐴 ↦ (𝑥 · 𝑁))
2 oveq1 7158 . . . . 5 (𝑦 = 𝑥 → (𝑦 gcd (𝑀 / 𝑁)) = (𝑥 gcd (𝑀 / 𝑁)))
32eqeq1d 2826 . . . 4 (𝑦 = 𝑥 → ((𝑦 gcd (𝑀 / 𝑁)) = 1 ↔ (𝑥 gcd (𝑀 / 𝑁)) = 1))
4 hashgcdlem.a . . . 4 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
53, 4elrab2 3669 . . 3 (𝑥𝐴 ↔ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1))
6 elfzonn0 13088 . . . . . . 7 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 ∈ ℕ0)
76ad2antrl 727 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℕ0)
8 nnnn0 11903 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
983ad2ant2 1131 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℕ0)
109adantr 484 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑁 ∈ ℕ0)
117, 10nn0mulcld 11959 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ ℕ0)
12 simpl1 1188 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 ∈ ℕ)
13 elfzolt2 13053 . . . . . . 7 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 < (𝑀 / 𝑁))
1413ad2antrl 727 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 < (𝑀 / 𝑁))
15 elfzoelz 13044 . . . . . . . . 9 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 ∈ ℤ)
1615ad2antrl 727 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℤ)
1716zred 12086 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℝ)
18 nnre 11643 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
19183ad2ant1 1130 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℝ)
2019adantr 484 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 ∈ ℝ)
21 nnre 11643 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
22 nngt0 11667 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 𝑁)
2321, 22jca 515 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
24233ad2ant2 1131 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
2524adantr 484 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
26 ltmuldiv 11513 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑥 · 𝑁) < 𝑀𝑥 < (𝑀 / 𝑁)))
2717, 20, 25, 26syl3anc 1368 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) < 𝑀𝑥 < (𝑀 / 𝑁)))
2814, 27mpbird 260 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) < 𝑀)
29 elfzo0 13084 . . . . 5 ((𝑥 · 𝑁) ∈ (0..^𝑀) ↔ ((𝑥 · 𝑁) ∈ ℕ0𝑀 ∈ ℕ ∧ (𝑥 · 𝑁) < 𝑀))
3011, 12, 28, 29syl3anbrc 1340 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ (0..^𝑀))
31 nncn 11644 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
32313ad2ant1 1130 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℂ)
33 nncn 11644 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
34333ad2ant2 1131 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℂ)
35 nnne0 11670 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
36353ad2ant2 1131 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ≠ 0)
3732, 34, 36divcan1d 11417 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3837adantr 484 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3938eqcomd 2830 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 = ((𝑀 / 𝑁) · 𝑁))
4039oveq2d 7167 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd 𝑀) = ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)))
41 nndivdvds 15618 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
4241biimp3a 1466 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℕ)
4342nnzd 12085 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℤ)
4443adantr 484 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑀 / 𝑁) ∈ ℤ)
45 mulgcdr 15898 . . . . . 6 ((𝑥 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)) = ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁))
4616, 44, 10, 45syl3anc 1368 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)) = ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁))
47 simprr 772 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 gcd (𝑀 / 𝑁)) = 1)
4847oveq1d 7166 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁) = (1 · 𝑁))
4934mulid2d 10659 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (1 · 𝑁) = 𝑁)
5049adantr 484 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (1 · 𝑁) = 𝑁)
5148, 50eqtrd 2859 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁) = 𝑁)
5240, 46, 513eqtrd 2863 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd 𝑀) = 𝑁)
53 oveq1 7158 . . . . . 6 (𝑧 = (𝑥 · 𝑁) → (𝑧 gcd 𝑀) = ((𝑥 · 𝑁) gcd 𝑀))
5453eqeq1d 2826 . . . . 5 (𝑧 = (𝑥 · 𝑁) → ((𝑧 gcd 𝑀) = 𝑁 ↔ ((𝑥 · 𝑁) gcd 𝑀) = 𝑁))
55 hashgcdlem.b . . . . 5 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁}
5654, 55elrab2 3669 . . . 4 ((𝑥 · 𝑁) ∈ 𝐵 ↔ ((𝑥 · 𝑁) ∈ (0..^𝑀) ∧ ((𝑥 · 𝑁) gcd 𝑀) = 𝑁))
5730, 52, 56sylanbrc 586 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ 𝐵)
585, 57sylan2b 596 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ 𝑥𝐴) → (𝑥 · 𝑁) ∈ 𝐵)
59 oveq1 7158 . . . . 5 (𝑧 = 𝑤 → (𝑧 gcd 𝑀) = (𝑤 gcd 𝑀))
6059eqeq1d 2826 . . . 4 (𝑧 = 𝑤 → ((𝑧 gcd 𝑀) = 𝑁 ↔ (𝑤 gcd 𝑀) = 𝑁))
6160, 55elrab2 3669 . . 3 (𝑤𝐵 ↔ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁))
62 simprr 772 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 gcd 𝑀) = 𝑁)
63 elfzoelz 13044 . . . . . . . . . . 11 (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ ℤ)
6463ad2antrl 727 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ ℤ)
65 simpl1 1188 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℕ)
6665nnzd 12085 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℤ)
67 gcddvds 15852 . . . . . . . . . 10 ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
6864, 66, 67syl2anc 587 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
6968simpld 498 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 gcd 𝑀) ∥ 𝑤)
7062, 69eqbrtrrd 5077 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁𝑤)
71 nnz 12003 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
72713ad2ant2 1131 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℤ)
7372adantr 484 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∈ ℤ)
7436adantr 484 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ≠ 0)
75 dvdsval2 15612 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑤 ∈ ℤ) → (𝑁𝑤 ↔ (𝑤 / 𝑁) ∈ ℤ))
7673, 74, 64, 75syl3anc 1368 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁𝑤 ↔ (𝑤 / 𝑁) ∈ ℤ))
7770, 76mpbid 235 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ ℤ)
78 elfzofz 13059 . . . . . . . . 9 (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ (0...𝑀))
7978ad2antrl 727 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ (0...𝑀))
80 elfznn0 13006 . . . . . . . 8 (𝑤 ∈ (0...𝑀) → 𝑤 ∈ ℕ0)
81 nn0re 11905 . . . . . . . . 9 (𝑤 ∈ ℕ0𝑤 ∈ ℝ)
82 nn0ge0 11921 . . . . . . . . 9 (𝑤 ∈ ℕ0 → 0 ≤ 𝑤)
8381, 82jca 515 . . . . . . . 8 (𝑤 ∈ ℕ0 → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤))
8479, 80, 833syl 18 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤))
8524adantr 484 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
86 divge0 11509 . . . . . . 7 (((𝑤 ∈ ℝ ∧ 0 ≤ 𝑤) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑤 / 𝑁))
8784, 85, 86syl2anc 587 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 0 ≤ (𝑤 / 𝑁))
88 elnn0z 11993 . . . . . 6 ((𝑤 / 𝑁) ∈ ℕ0 ↔ ((𝑤 / 𝑁) ∈ ℤ ∧ 0 ≤ (𝑤 / 𝑁)))
8977, 87, 88sylanbrc 586 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ ℕ0)
9042adantr 484 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑀 / 𝑁) ∈ ℕ)
91 elfzolt2 13053 . . . . . . 7 (𝑤 ∈ (0..^𝑀) → 𝑤 < 𝑀)
9291ad2antrl 727 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 < 𝑀)
9364zred 12086 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ ℝ)
9419adantr 484 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℝ)
95 ltdiv1 11504 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑤 < 𝑀 ↔ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9693, 94, 85, 95syl3anc 1368 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 < 𝑀 ↔ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9792, 96mpbid 235 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) < (𝑀 / 𝑁))
98 elfzo0 13084 . . . . 5 ((𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)) ↔ ((𝑤 / 𝑁) ∈ ℕ0 ∧ (𝑀 / 𝑁) ∈ ℕ ∧ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9989, 90, 97, 98syl3anbrc 1340 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)))
10062oveq1d 7166 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) / 𝑁) = (𝑁 / 𝑁))
101 simpl2 1189 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∈ ℕ)
102 simpl3 1190 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁𝑀)
103 gcddiv 15899 . . . . . 6 (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑁𝑤𝑁𝑀)) → ((𝑤 gcd 𝑀) / 𝑁) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
10464, 66, 101, 70, 102, 103syl32anc 1375 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) / 𝑁) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
10534, 36dividd 11414 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑁 / 𝑁) = 1)
106105adantr 484 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 / 𝑁) = 1)
107100, 104, 1063eqtr3d 2867 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1)
108 oveq1 7158 . . . . . 6 (𝑦 = (𝑤 / 𝑁) → (𝑦 gcd (𝑀 / 𝑁)) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
109108eqeq1d 2826 . . . . 5 (𝑦 = (𝑤 / 𝑁) → ((𝑦 gcd (𝑀 / 𝑁)) = 1 ↔ ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1))
110109, 4elrab2 3669 . . . 4 ((𝑤 / 𝑁) ∈ 𝐴 ↔ ((𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)) ∧ ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1))
11199, 107, 110sylanbrc 586 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ 𝐴)
11261, 111sylan2b 596 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ 𝑤𝐵) → (𝑤 / 𝑁) ∈ 𝐴)
1135simplbi 501 . . . 4 (𝑥𝐴𝑥 ∈ (0..^(𝑀 / 𝑁)))
11461simplbi 501 . . . 4 (𝑤𝐵𝑤 ∈ (0..^𝑀))
115113, 114anim12i 615 . . 3 ((𝑥𝐴𝑤𝐵) → (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀)))
11663ad2antll 728 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 ∈ ℤ)
117116zcnd 12087 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 ∈ ℂ)
11834adantr 484 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑁 ∈ ℂ)
11936adantr 484 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑁 ≠ 0)
120117, 118, 119divcan1d 11417 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → ((𝑤 / 𝑁) · 𝑁) = 𝑤)
121120eqcomd 2830 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 = ((𝑤 / 𝑁) · 𝑁))
122 oveq1 7158 . . . . . 6 (𝑥 = (𝑤 / 𝑁) → (𝑥 · 𝑁) = ((𝑤 / 𝑁) · 𝑁))
123122eqeq2d 2835 . . . . 5 (𝑥 = (𝑤 / 𝑁) → (𝑤 = (𝑥 · 𝑁) ↔ 𝑤 = ((𝑤 / 𝑁) · 𝑁)))
124121, 123syl5ibrcom 250 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑥 = (𝑤 / 𝑁) → 𝑤 = (𝑥 · 𝑁)))
12515ad2antrl 727 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 ∈ ℤ)
126125zcnd 12087 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 ∈ ℂ)
127126, 118, 119divcan4d 11422 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → ((𝑥 · 𝑁) / 𝑁) = 𝑥)
128127eqcomd 2830 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 = ((𝑥 · 𝑁) / 𝑁))
129 oveq1 7158 . . . . . 6 (𝑤 = (𝑥 · 𝑁) → (𝑤 / 𝑁) = ((𝑥 · 𝑁) / 𝑁))
130129eqeq2d 2835 . . . . 5 (𝑤 = (𝑥 · 𝑁) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑥 = ((𝑥 · 𝑁) / 𝑁)))
131128, 130syl5ibrcom 250 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑤 = (𝑥 · 𝑁) → 𝑥 = (𝑤 / 𝑁)))
132124, 131impbid 215 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑤 = (𝑥 · 𝑁)))
133115, 132sylan2 595 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥𝐴𝑤𝐵)) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑤 = (𝑥 · 𝑁)))
1341, 58, 112, 133f1o2d 7395 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝐹:𝐴1-1-onto𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  {crab 3137   class class class wbr 5053   ↦ cmpt 5133  –1-1-onto→wf1o 6344  (class class class)co 7151  ℂcc 10535  ℝcr 10536  0cc0 10537  1c1 10538   · cmul 10542   < clt 10675   ≤ cle 10676   / cdiv 11297  ℕcn 11636  ℕ0cn0 11896  ℤcz 11980  ...cfz 12896  ..^cfzo 13039   ∥ cdvds 15609   gcd cgcd 15843 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-sup 8905  df-inf 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11637  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12897  df-fzo 13040  df-fl 13168  df-mod 13244  df-seq 13376  df-exp 13437  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-gcd 15844 This theorem is referenced by:  hashgcdeq  16126
 Copyright terms: Public domain W3C validator