MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgcdlem Structured version   Visualization version   GIF version

Theorem hashgcdlem 16822
Description: A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
hashgcdlem.a 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
hashgcdlem.b 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁}
hashgcdlem.f 𝐹 = (𝑥𝐴 ↦ (𝑥 · 𝑁))
Assertion
Ref Expression
hashgcdlem ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝐹:𝐴1-1-onto𝐵)
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑧,𝑀   𝑥,𝐴   𝑥,𝐵   𝑥,𝑁,𝑦   𝑧,𝑁
Allowed substitution hints:   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem hashgcdlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 hashgcdlem.f . 2 𝐹 = (𝑥𝐴 ↦ (𝑥 · 𝑁))
2 oveq1 7438 . . . . 5 (𝑦 = 𝑥 → (𝑦 gcd (𝑀 / 𝑁)) = (𝑥 gcd (𝑀 / 𝑁)))
32eqeq1d 2737 . . . 4 (𝑦 = 𝑥 → ((𝑦 gcd (𝑀 / 𝑁)) = 1 ↔ (𝑥 gcd (𝑀 / 𝑁)) = 1))
4 hashgcdlem.a . . . 4 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
53, 4elrab2 3698 . . 3 (𝑥𝐴 ↔ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1))
6 elfzonn0 13744 . . . . . . 7 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 ∈ ℕ0)
76ad2antrl 728 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℕ0)
8 nnnn0 12531 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
983ad2ant2 1133 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℕ0)
109adantr 480 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑁 ∈ ℕ0)
117, 10nn0mulcld 12590 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ ℕ0)
12 simpl1 1190 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 ∈ ℕ)
13 elfzolt2 13705 . . . . . . 7 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 < (𝑀 / 𝑁))
1413ad2antrl 728 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 < (𝑀 / 𝑁))
15 elfzoelz 13696 . . . . . . . . 9 (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 ∈ ℤ)
1615ad2antrl 728 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℤ)
1716zred 12720 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℝ)
18 nnre 12271 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
19183ad2ant1 1132 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℝ)
2019adantr 480 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 ∈ ℝ)
21 nnre 12271 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
22 nngt0 12295 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 𝑁)
2321, 22jca 511 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
24233ad2ant2 1133 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
2524adantr 480 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
26 ltmuldiv 12139 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑥 · 𝑁) < 𝑀𝑥 < (𝑀 / 𝑁)))
2717, 20, 25, 26syl3anc 1370 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) < 𝑀𝑥 < (𝑀 / 𝑁)))
2814, 27mpbird 257 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) < 𝑀)
29 elfzo0 13737 . . . . 5 ((𝑥 · 𝑁) ∈ (0..^𝑀) ↔ ((𝑥 · 𝑁) ∈ ℕ0𝑀 ∈ ℕ ∧ (𝑥 · 𝑁) < 𝑀))
3011, 12, 28, 29syl3anbrc 1342 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ (0..^𝑀))
31 nncn 12272 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
32313ad2ant1 1132 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑀 ∈ ℂ)
33 nncn 12272 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
34333ad2ant2 1133 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℂ)
35 nnne0 12298 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
36353ad2ant2 1133 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ≠ 0)
3732, 34, 36divcan1d 12042 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3837adantr 480 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑀 / 𝑁) · 𝑁) = 𝑀)
3938eqcomd 2741 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 = ((𝑀 / 𝑁) · 𝑁))
4039oveq2d 7447 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd 𝑀) = ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)))
41 nndivdvds 16296 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
4241biimp3a 1468 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℕ)
4342nnzd 12638 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℤ)
4443adantr 480 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑀 / 𝑁) ∈ ℤ)
45 mulgcdr 16584 . . . . . 6 ((𝑥 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)) = ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁))
4616, 44, 10, 45syl3anc 1370 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)) = ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁))
47 simprr 773 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 gcd (𝑀 / 𝑁)) = 1)
4847oveq1d 7446 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁) = (1 · 𝑁))
4934mullidd 11277 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (1 · 𝑁) = 𝑁)
5049adantr 480 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (1 · 𝑁) = 𝑁)
5148, 50eqtrd 2775 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁) = 𝑁)
5240, 46, 513eqtrd 2779 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd 𝑀) = 𝑁)
53 oveq1 7438 . . . . . 6 (𝑧 = (𝑥 · 𝑁) → (𝑧 gcd 𝑀) = ((𝑥 · 𝑁) gcd 𝑀))
5453eqeq1d 2737 . . . . 5 (𝑧 = (𝑥 · 𝑁) → ((𝑧 gcd 𝑀) = 𝑁 ↔ ((𝑥 · 𝑁) gcd 𝑀) = 𝑁))
55 hashgcdlem.b . . . . 5 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁}
5654, 55elrab2 3698 . . . 4 ((𝑥 · 𝑁) ∈ 𝐵 ↔ ((𝑥 · 𝑁) ∈ (0..^𝑀) ∧ ((𝑥 · 𝑁) gcd 𝑀) = 𝑁))
5730, 52, 56sylanbrc 583 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ 𝐵)
585, 57sylan2b 594 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ 𝑥𝐴) → (𝑥 · 𝑁) ∈ 𝐵)
59 oveq1 7438 . . . . 5 (𝑧 = 𝑤 → (𝑧 gcd 𝑀) = (𝑤 gcd 𝑀))
6059eqeq1d 2737 . . . 4 (𝑧 = 𝑤 → ((𝑧 gcd 𝑀) = 𝑁 ↔ (𝑤 gcd 𝑀) = 𝑁))
6160, 55elrab2 3698 . . 3 (𝑤𝐵 ↔ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁))
62 simprr 773 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 gcd 𝑀) = 𝑁)
63 elfzoelz 13696 . . . . . . . . . . 11 (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ ℤ)
6463ad2antrl 728 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ ℤ)
65 simpl1 1190 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℕ)
6665nnzd 12638 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℤ)
67 gcddvds 16537 . . . . . . . . . 10 ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
6864, 66, 67syl2anc 584 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀))
6968simpld 494 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 gcd 𝑀) ∥ 𝑤)
7062, 69eqbrtrrd 5172 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁𝑤)
71 nnz 12632 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
72713ad2ant2 1133 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ ℤ)
7372adantr 480 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∈ ℤ)
7436adantr 480 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ≠ 0)
75 dvdsval2 16290 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑤 ∈ ℤ) → (𝑁𝑤 ↔ (𝑤 / 𝑁) ∈ ℤ))
7673, 74, 64, 75syl3anc 1370 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁𝑤 ↔ (𝑤 / 𝑁) ∈ ℤ))
7770, 76mpbid 232 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ ℤ)
78 elfzofz 13712 . . . . . . . . 9 (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ (0...𝑀))
7978ad2antrl 728 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ (0...𝑀))
80 elfznn0 13657 . . . . . . . 8 (𝑤 ∈ (0...𝑀) → 𝑤 ∈ ℕ0)
81 nn0re 12533 . . . . . . . . 9 (𝑤 ∈ ℕ0𝑤 ∈ ℝ)
82 nn0ge0 12549 . . . . . . . . 9 (𝑤 ∈ ℕ0 → 0 ≤ 𝑤)
8381, 82jca 511 . . . . . . . 8 (𝑤 ∈ ℕ0 → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤))
8479, 80, 833syl 18 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤))
8524adantr 480 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
86 divge0 12135 . . . . . . 7 (((𝑤 ∈ ℝ ∧ 0 ≤ 𝑤) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑤 / 𝑁))
8784, 85, 86syl2anc 584 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 0 ≤ (𝑤 / 𝑁))
88 elnn0z 12624 . . . . . 6 ((𝑤 / 𝑁) ∈ ℕ0 ↔ ((𝑤 / 𝑁) ∈ ℤ ∧ 0 ≤ (𝑤 / 𝑁)))
8977, 87, 88sylanbrc 583 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ ℕ0)
9042adantr 480 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑀 / 𝑁) ∈ ℕ)
91 elfzolt2 13705 . . . . . . 7 (𝑤 ∈ (0..^𝑀) → 𝑤 < 𝑀)
9291ad2antrl 728 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 < 𝑀)
9364zred 12720 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ ℝ)
9419adantr 480 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℝ)
95 ltdiv1 12130 . . . . . . 7 ((𝑤 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑤 < 𝑀 ↔ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9693, 94, 85, 95syl3anc 1370 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 < 𝑀 ↔ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9792, 96mpbid 232 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) < (𝑀 / 𝑁))
98 elfzo0 13737 . . . . 5 ((𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)) ↔ ((𝑤 / 𝑁) ∈ ℕ0 ∧ (𝑀 / 𝑁) ∈ ℕ ∧ (𝑤 / 𝑁) < (𝑀 / 𝑁)))
9989, 90, 97, 98syl3anbrc 1342 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)))
10062oveq1d 7446 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) / 𝑁) = (𝑁 / 𝑁))
101 simpl2 1191 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∈ ℕ)
102 simpl3 1192 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁𝑀)
103 gcddiv 16585 . . . . . 6 (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑁𝑤𝑁𝑀)) → ((𝑤 gcd 𝑀) / 𝑁) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
10464, 66, 101, 70, 102, 103syl32anc 1377 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) / 𝑁) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
10534, 36dividd 12039 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑁 / 𝑁) = 1)
106105adantr 480 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 / 𝑁) = 1)
107100, 104, 1063eqtr3d 2783 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1)
108 oveq1 7438 . . . . . 6 (𝑦 = (𝑤 / 𝑁) → (𝑦 gcd (𝑀 / 𝑁)) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)))
109108eqeq1d 2737 . . . . 5 (𝑦 = (𝑤 / 𝑁) → ((𝑦 gcd (𝑀 / 𝑁)) = 1 ↔ ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1))
110109, 4elrab2 3698 . . . 4 ((𝑤 / 𝑁) ∈ 𝐴 ↔ ((𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)) ∧ ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1))
11199, 107, 110sylanbrc 583 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ 𝐴)
11261, 111sylan2b 594 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ 𝑤𝐵) → (𝑤 / 𝑁) ∈ 𝐴)
1135simplbi 497 . . . 4 (𝑥𝐴𝑥 ∈ (0..^(𝑀 / 𝑁)))
11461simplbi 497 . . . 4 (𝑤𝐵𝑤 ∈ (0..^𝑀))
115113, 114anim12i 613 . . 3 ((𝑥𝐴𝑤𝐵) → (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀)))
11663ad2antll 729 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 ∈ ℤ)
117116zcnd 12721 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 ∈ ℂ)
11834adantr 480 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑁 ∈ ℂ)
11936adantr 480 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑁 ≠ 0)
120117, 118, 119divcan1d 12042 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → ((𝑤 / 𝑁) · 𝑁) = 𝑤)
121120eqcomd 2741 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 = ((𝑤 / 𝑁) · 𝑁))
122 oveq1 7438 . . . . . 6 (𝑥 = (𝑤 / 𝑁) → (𝑥 · 𝑁) = ((𝑤 / 𝑁) · 𝑁))
123122eqeq2d 2746 . . . . 5 (𝑥 = (𝑤 / 𝑁) → (𝑤 = (𝑥 · 𝑁) ↔ 𝑤 = ((𝑤 / 𝑁) · 𝑁)))
124121, 123syl5ibrcom 247 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑥 = (𝑤 / 𝑁) → 𝑤 = (𝑥 · 𝑁)))
12515ad2antrl 728 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 ∈ ℤ)
126125zcnd 12721 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 ∈ ℂ)
127126, 118, 119divcan4d 12047 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → ((𝑥 · 𝑁) / 𝑁) = 𝑥)
128127eqcomd 2741 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 = ((𝑥 · 𝑁) / 𝑁))
129 oveq1 7438 . . . . . 6 (𝑤 = (𝑥 · 𝑁) → (𝑤 / 𝑁) = ((𝑥 · 𝑁) / 𝑁))
130129eqeq2d 2746 . . . . 5 (𝑤 = (𝑥 · 𝑁) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑥 = ((𝑥 · 𝑁) / 𝑁)))
131128, 130syl5ibrcom 247 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑤 = (𝑥 · 𝑁) → 𝑥 = (𝑤 / 𝑁)))
132124, 131impbid 212 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑤 = (𝑥 · 𝑁)))
133115, 132sylan2 593 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) ∧ (𝑥𝐴𝑤𝐵)) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑤 = (𝑥 · 𝑁)))
1341, 58, 112, 133f1o2d 7687 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝐹:𝐴1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  {crab 3433   class class class wbr 5148  cmpt 5231  1-1-ontowf1o 6562  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294   / cdiv 11918  cn 12264  0cn0 12524  cz 12611  ...cfz 13544  ..^cfzo 13691  cdvds 16287   gcd cgcd 16528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529
This theorem is referenced by:  hashgcdeq  16823
  Copyright terms: Public domain W3C validator