Step | Hyp | Ref
| Expression |
1 | | hashgcdlem.f |
. 2
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝑥 · 𝑁)) |
2 | | oveq1 7262 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑦 gcd (𝑀 / 𝑁)) = (𝑥 gcd (𝑀 / 𝑁))) |
3 | 2 | eqeq1d 2740 |
. . . 4
⊢ (𝑦 = 𝑥 → ((𝑦 gcd (𝑀 / 𝑁)) = 1 ↔ (𝑥 gcd (𝑀 / 𝑁)) = 1)) |
4 | | hashgcdlem.a |
. . . 4
⊢ 𝐴 = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} |
5 | 3, 4 | elrab2 3620 |
. . 3
⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) |
6 | | elfzonn0 13360 |
. . . . . . 7
⊢ (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 ∈ ℕ0) |
7 | 6 | ad2antrl 724 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℕ0) |
8 | | nnnn0 12170 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
9 | 8 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → 𝑁 ∈
ℕ0) |
10 | 9 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑁 ∈
ℕ0) |
11 | 7, 10 | nn0mulcld 12228 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈
ℕ0) |
12 | | simpl1 1189 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 ∈ ℕ) |
13 | | elfzolt2 13325 |
. . . . . . 7
⊢ (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 < (𝑀 / 𝑁)) |
14 | 13 | ad2antrl 724 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 < (𝑀 / 𝑁)) |
15 | | elfzoelz 13316 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0..^(𝑀 / 𝑁)) → 𝑥 ∈ ℤ) |
16 | 15 | ad2antrl 724 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℤ) |
17 | 16 | zred 12355 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑥 ∈ ℝ) |
18 | | nnre 11910 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
19 | 18 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → 𝑀 ∈ ℝ) |
20 | 19 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 ∈ ℝ) |
21 | | nnre 11910 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
22 | | nngt0 11934 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
23 | 21, 22 | jca 511 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ 0 <
𝑁)) |
24 | 23 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
25 | 24 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
26 | | ltmuldiv 11778 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 <
𝑁)) → ((𝑥 · 𝑁) < 𝑀 ↔ 𝑥 < (𝑀 / 𝑁))) |
27 | 17, 20, 25, 26 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) < 𝑀 ↔ 𝑥 < (𝑀 / 𝑁))) |
28 | 14, 27 | mpbird 256 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) < 𝑀) |
29 | | elfzo0 13356 |
. . . . 5
⊢ ((𝑥 · 𝑁) ∈ (0..^𝑀) ↔ ((𝑥 · 𝑁) ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ (𝑥 · 𝑁) < 𝑀)) |
30 | 11, 12, 28, 29 | syl3anbrc 1341 |
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ (0..^𝑀)) |
31 | | nncn 11911 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℂ) |
32 | 31 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → 𝑀 ∈ ℂ) |
33 | | nncn 11911 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
34 | 33 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → 𝑁 ∈ ℂ) |
35 | | nnne0 11937 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
36 | 35 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → 𝑁 ≠ 0) |
37 | 32, 34, 36 | divcan1d 11682 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → ((𝑀 / 𝑁) · 𝑁) = 𝑀) |
38 | 37 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑀 / 𝑁) · 𝑁) = 𝑀) |
39 | 38 | eqcomd 2744 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → 𝑀 = ((𝑀 / 𝑁) · 𝑁)) |
40 | 39 | oveq2d 7271 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd 𝑀) = ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁))) |
41 | | nndivdvds 15900 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 ∥ 𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ)) |
42 | 41 | biimp3a 1467 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → (𝑀 / 𝑁) ∈ ℕ) |
43 | 42 | nnzd 12354 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → (𝑀 / 𝑁) ∈ ℤ) |
44 | 43 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑀 / 𝑁) ∈ ℤ) |
45 | | mulgcdr 16186 |
. . . . . 6
⊢ ((𝑥 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)) = ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁)) |
46 | 16, 44, 10, 45 | syl3anc 1369 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd ((𝑀 / 𝑁) · 𝑁)) = ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁)) |
47 | | simprr 769 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 gcd (𝑀 / 𝑁)) = 1) |
48 | 47 | oveq1d 7270 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁) = (1 · 𝑁)) |
49 | 34 | mulid2d 10924 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → (1 · 𝑁) = 𝑁) |
50 | 49 | adantr 480 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (1 · 𝑁) = 𝑁) |
51 | 48, 50 | eqtrd 2778 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 gcd (𝑀 / 𝑁)) · 𝑁) = 𝑁) |
52 | 40, 46, 51 | 3eqtrd 2782 |
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → ((𝑥 · 𝑁) gcd 𝑀) = 𝑁) |
53 | | oveq1 7262 |
. . . . . 6
⊢ (𝑧 = (𝑥 · 𝑁) → (𝑧 gcd 𝑀) = ((𝑥 · 𝑁) gcd 𝑀)) |
54 | 53 | eqeq1d 2740 |
. . . . 5
⊢ (𝑧 = (𝑥 · 𝑁) → ((𝑧 gcd 𝑀) = 𝑁 ↔ ((𝑥 · 𝑁) gcd 𝑀) = 𝑁)) |
55 | | hashgcdlem.b |
. . . . 5
⊢ 𝐵 = {𝑧 ∈ (0..^𝑀) ∣ (𝑧 gcd 𝑀) = 𝑁} |
56 | 54, 55 | elrab2 3620 |
. . . 4
⊢ ((𝑥 · 𝑁) ∈ 𝐵 ↔ ((𝑥 · 𝑁) ∈ (0..^𝑀) ∧ ((𝑥 · 𝑁) gcd 𝑀) = 𝑁)) |
57 | 30, 52, 56 | sylanbrc 582 |
. . 3
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ (𝑥 gcd (𝑀 / 𝑁)) = 1)) → (𝑥 · 𝑁) ∈ 𝐵) |
58 | 5, 57 | sylan2b 593 |
. 2
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ 𝑥 ∈ 𝐴) → (𝑥 · 𝑁) ∈ 𝐵) |
59 | | oveq1 7262 |
. . . . 5
⊢ (𝑧 = 𝑤 → (𝑧 gcd 𝑀) = (𝑤 gcd 𝑀)) |
60 | 59 | eqeq1d 2740 |
. . . 4
⊢ (𝑧 = 𝑤 → ((𝑧 gcd 𝑀) = 𝑁 ↔ (𝑤 gcd 𝑀) = 𝑁)) |
61 | 60, 55 | elrab2 3620 |
. . 3
⊢ (𝑤 ∈ 𝐵 ↔ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) |
62 | | simprr 769 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 gcd 𝑀) = 𝑁) |
63 | | elfzoelz 13316 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ ℤ) |
64 | 63 | ad2antrl 724 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ ℤ) |
65 | | simpl1 1189 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℕ) |
66 | 65 | nnzd 12354 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℤ) |
67 | | gcddvds 16138 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
68 | 64, 66, 67 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) ∥ 𝑤 ∧ (𝑤 gcd 𝑀) ∥ 𝑀)) |
69 | 68 | simpld 494 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 gcd 𝑀) ∥ 𝑤) |
70 | 62, 69 | eqbrtrrd 5094 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∥ 𝑤) |
71 | | nnz 12272 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
72 | 71 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → 𝑁 ∈ ℤ) |
73 | 72 | adantr 480 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∈ ℤ) |
74 | 36 | adantr 480 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ≠ 0) |
75 | | dvdsval2 15894 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑤 ∈ ℤ) → (𝑁 ∥ 𝑤 ↔ (𝑤 / 𝑁) ∈ ℤ)) |
76 | 73, 74, 64, 75 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 ∥ 𝑤 ↔ (𝑤 / 𝑁) ∈ ℤ)) |
77 | 70, 76 | mpbid 231 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ ℤ) |
78 | | elfzofz 13331 |
. . . . . . . . 9
⊢ (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ (0...𝑀)) |
79 | 78 | ad2antrl 724 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ (0...𝑀)) |
80 | | elfznn0 13278 |
. . . . . . . 8
⊢ (𝑤 ∈ (0...𝑀) → 𝑤 ∈ ℕ0) |
81 | | nn0re 12172 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℕ0
→ 𝑤 ∈
ℝ) |
82 | | nn0ge0 12188 |
. . . . . . . . 9
⊢ (𝑤 ∈ ℕ0
→ 0 ≤ 𝑤) |
83 | 81, 82 | jca 511 |
. . . . . . . 8
⊢ (𝑤 ∈ ℕ0
→ (𝑤 ∈ ℝ
∧ 0 ≤ 𝑤)) |
84 | 79, 80, 83 | 3syl 18 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 ∈ ℝ ∧ 0 ≤ 𝑤)) |
85 | 24 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
86 | | divge0 11774 |
. . . . . . 7
⊢ (((𝑤 ∈ ℝ ∧ 0 ≤
𝑤) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ (𝑤 / 𝑁)) |
87 | 84, 85, 86 | syl2anc 583 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 0 ≤ (𝑤 / 𝑁)) |
88 | | elnn0z 12262 |
. . . . . 6
⊢ ((𝑤 / 𝑁) ∈ ℕ0 ↔ ((𝑤 / 𝑁) ∈ ℤ ∧ 0 ≤ (𝑤 / 𝑁))) |
89 | 77, 87, 88 | sylanbrc 582 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈
ℕ0) |
90 | 42 | adantr 480 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑀 / 𝑁) ∈ ℕ) |
91 | | elfzolt2 13325 |
. . . . . . 7
⊢ (𝑤 ∈ (0..^𝑀) → 𝑤 < 𝑀) |
92 | 91 | ad2antrl 724 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 < 𝑀) |
93 | 64 | zred 12355 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑤 ∈ ℝ) |
94 | 19 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℝ) |
95 | | ltdiv1 11769 |
. . . . . . 7
⊢ ((𝑤 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 <
𝑁)) → (𝑤 < 𝑀 ↔ (𝑤 / 𝑁) < (𝑀 / 𝑁))) |
96 | 93, 94, 85, 95 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 < 𝑀 ↔ (𝑤 / 𝑁) < (𝑀 / 𝑁))) |
97 | 92, 96 | mpbid 231 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) < (𝑀 / 𝑁)) |
98 | | elfzo0 13356 |
. . . . 5
⊢ ((𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)) ↔ ((𝑤 / 𝑁) ∈ ℕ0 ∧ (𝑀 / 𝑁) ∈ ℕ ∧ (𝑤 / 𝑁) < (𝑀 / 𝑁))) |
99 | 89, 90, 97, 98 | syl3anbrc 1341 |
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁))) |
100 | 62 | oveq1d 7270 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) / 𝑁) = (𝑁 / 𝑁)) |
101 | | simpl2 1190 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∈ ℕ) |
102 | | simpl3 1191 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → 𝑁 ∥ 𝑀) |
103 | | gcddiv 16187 |
. . . . . 6
⊢ (((𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝑁 ∥ 𝑤 ∧ 𝑁 ∥ 𝑀)) → ((𝑤 gcd 𝑀) / 𝑁) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁))) |
104 | 64, 66, 101, 70, 102, 103 | syl32anc 1376 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 gcd 𝑀) / 𝑁) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁))) |
105 | 34, 36 | dividd 11679 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → (𝑁 / 𝑁) = 1) |
106 | 105 | adantr 480 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑁 / 𝑁) = 1) |
107 | 100, 104,
106 | 3eqtr3d 2786 |
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1) |
108 | | oveq1 7262 |
. . . . . 6
⊢ (𝑦 = (𝑤 / 𝑁) → (𝑦 gcd (𝑀 / 𝑁)) = ((𝑤 / 𝑁) gcd (𝑀 / 𝑁))) |
109 | 108 | eqeq1d 2740 |
. . . . 5
⊢ (𝑦 = (𝑤 / 𝑁) → ((𝑦 gcd (𝑀 / 𝑁)) = 1 ↔ ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1)) |
110 | 109, 4 | elrab2 3620 |
. . . 4
⊢ ((𝑤 / 𝑁) ∈ 𝐴 ↔ ((𝑤 / 𝑁) ∈ (0..^(𝑀 / 𝑁)) ∧ ((𝑤 / 𝑁) gcd (𝑀 / 𝑁)) = 1)) |
111 | 99, 107, 110 | sylanbrc 582 |
. . 3
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑤 ∈ (0..^𝑀) ∧ (𝑤 gcd 𝑀) = 𝑁)) → (𝑤 / 𝑁) ∈ 𝐴) |
112 | 61, 111 | sylan2b 593 |
. 2
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ 𝑤 ∈ 𝐵) → (𝑤 / 𝑁) ∈ 𝐴) |
113 | 5 | simplbi 497 |
. . . 4
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (0..^(𝑀 / 𝑁))) |
114 | 61 | simplbi 497 |
. . . 4
⊢ (𝑤 ∈ 𝐵 → 𝑤 ∈ (0..^𝑀)) |
115 | 113, 114 | anim12i 612 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵) → (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) |
116 | 63 | ad2antll 725 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 ∈ ℤ) |
117 | 116 | zcnd 12356 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 ∈ ℂ) |
118 | 34 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑁 ∈ ℂ) |
119 | 36 | adantr 480 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑁 ≠ 0) |
120 | 117, 118,
119 | divcan1d 11682 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → ((𝑤 / 𝑁) · 𝑁) = 𝑤) |
121 | 120 | eqcomd 2744 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑤 = ((𝑤 / 𝑁) · 𝑁)) |
122 | | oveq1 7262 |
. . . . . 6
⊢ (𝑥 = (𝑤 / 𝑁) → (𝑥 · 𝑁) = ((𝑤 / 𝑁) · 𝑁)) |
123 | 122 | eqeq2d 2749 |
. . . . 5
⊢ (𝑥 = (𝑤 / 𝑁) → (𝑤 = (𝑥 · 𝑁) ↔ 𝑤 = ((𝑤 / 𝑁) · 𝑁))) |
124 | 121, 123 | syl5ibrcom 246 |
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑥 = (𝑤 / 𝑁) → 𝑤 = (𝑥 · 𝑁))) |
125 | 15 | ad2antrl 724 |
. . . . . . . 8
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 ∈ ℤ) |
126 | 125 | zcnd 12356 |
. . . . . . 7
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 ∈ ℂ) |
127 | 126, 118,
119 | divcan4d 11687 |
. . . . . 6
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → ((𝑥 · 𝑁) / 𝑁) = 𝑥) |
128 | 127 | eqcomd 2744 |
. . . . 5
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → 𝑥 = ((𝑥 · 𝑁) / 𝑁)) |
129 | | oveq1 7262 |
. . . . . 6
⊢ (𝑤 = (𝑥 · 𝑁) → (𝑤 / 𝑁) = ((𝑥 · 𝑁) / 𝑁)) |
130 | 129 | eqeq2d 2749 |
. . . . 5
⊢ (𝑤 = (𝑥 · 𝑁) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑥 = ((𝑥 · 𝑁) / 𝑁))) |
131 | 128, 130 | syl5ibrcom 246 |
. . . 4
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑤 = (𝑥 · 𝑁) → 𝑥 = (𝑤 / 𝑁))) |
132 | 124, 131 | impbid 211 |
. . 3
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ (0..^(𝑀 / 𝑁)) ∧ 𝑤 ∈ (0..^𝑀))) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑤 = (𝑥 · 𝑁))) |
133 | 115, 132 | sylan2 592 |
. 2
⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) ∧ (𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵)) → (𝑥 = (𝑤 / 𝑁) ↔ 𝑤 = (𝑥 · 𝑁))) |
134 | 1, 58, 112, 133 | f1o2d 7501 |
1
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝑀) → 𝐹:𝐴–1-1-onto→𝐵) |