| Step | Hyp | Ref
| Expression |
| 1 | | conjghm.x |
. . 3
⊢ 𝑋 = (Base‘𝐺) |
| 2 | | conjghm.p |
. . 3
⊢ + =
(+g‘𝐺) |
| 3 | | simpl 482 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ Grp) |
| 4 | 3 | adantr 480 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝐺 ∈ Grp) |
| 5 | 1, 2 | grpcl 18929 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝐴 + 𝑥) ∈ 𝑋) |
| 6 | 5 | 3expa 1118 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → (𝐴 + 𝑥) ∈ 𝑋) |
| 7 | | simplr 768 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
| 8 | | conjghm.m |
. . . . . 6
⊢ − =
(-g‘𝐺) |
| 9 | 1, 8 | grpsubcl 19008 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + 𝑥) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋) |
| 10 | 4, 6, 7, 9 | syl3anc 1373 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋) |
| 11 | | conjghm.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) |
| 12 | 10, 11 | fmptd 7109 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑋⟶𝑋) |
| 13 | 3 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝐺 ∈ Grp) |
| 14 | | simplr 768 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
| 15 | | simprl 770 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
| 16 | 1, 2 | grpcl 18929 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴 + 𝑦) ∈ 𝑋) |
| 17 | 13, 14, 15, 16 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐴 + 𝑦) ∈ 𝑋) |
| 18 | 1, 8 | grpsubcl 19008 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + 𝑦) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴 + 𝑦) − 𝐴) ∈ 𝑋) |
| 19 | 13, 17, 14, 18 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑦) − 𝐴) ∈ 𝑋) |
| 20 | | simprr 772 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
| 21 | 1, 8 | grpsubcl 19008 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑧 − 𝐴) ∈ 𝑋) |
| 22 | 13, 20, 14, 21 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧 − 𝐴) ∈ 𝑋) |
| 23 | 1, 2 | grpass 18930 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (((𝐴 + 𝑦) − 𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑧 − 𝐴) ∈ 𝑋)) → ((((𝐴 + 𝑦) − 𝐴) + 𝐴) + (𝑧 − 𝐴)) = (((𝐴 + 𝑦) − 𝐴) + (𝐴 + (𝑧 − 𝐴)))) |
| 24 | 13, 19, 14, 22, 23 | syl13anc 1374 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((((𝐴 + 𝑦) − 𝐴) + 𝐴) + (𝑧 − 𝐴)) = (((𝐴 + 𝑦) − 𝐴) + (𝐴 + (𝑧 − 𝐴)))) |
| 25 | 1, 2, 8 | grpnpcan 19020 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + 𝑦) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (((𝐴 + 𝑦) − 𝐴) + 𝐴) = (𝐴 + 𝑦)) |
| 26 | 13, 17, 14, 25 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (((𝐴 + 𝑦) − 𝐴) + 𝐴) = (𝐴 + 𝑦)) |
| 27 | 26 | oveq1d 7425 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((((𝐴 + 𝑦) − 𝐴) + 𝐴) + (𝑧 − 𝐴)) = ((𝐴 + 𝑦) + (𝑧 − 𝐴))) |
| 28 | 1, 2, 8 | grpaddsubass 19018 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ ((𝐴 + 𝑦) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (((𝐴 + 𝑦) + 𝑧) − 𝐴) = ((𝐴 + 𝑦) + (𝑧 − 𝐴))) |
| 29 | 13, 17, 20, 14, 28 | syl13anc 1374 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (((𝐴 + 𝑦) + 𝑧) − 𝐴) = ((𝐴 + 𝑦) + (𝑧 − 𝐴))) |
| 30 | 1, 2 | grpass 18930 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑦) + 𝑧) = (𝐴 + (𝑦 + 𝑧))) |
| 31 | 13, 14, 15, 20, 30 | syl13anc 1374 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑦) + 𝑧) = (𝐴 + (𝑦 + 𝑧))) |
| 32 | 31 | oveq1d 7425 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (((𝐴 + 𝑦) + 𝑧) − 𝐴) = ((𝐴 + (𝑦 + 𝑧)) − 𝐴)) |
| 33 | 27, 29, 32 | 3eqtr2rd 2778 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + (𝑦 + 𝑧)) − 𝐴) = ((((𝐴 + 𝑦) − 𝐴) + 𝐴) + (𝑧 − 𝐴))) |
| 34 | 1, 2, 8 | grpaddsubass 19018 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝑧) − 𝐴) = (𝐴 + (𝑧 − 𝐴))) |
| 35 | 13, 14, 20, 14, 34 | syl13anc 1374 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑧) − 𝐴) = (𝐴 + (𝑧 − 𝐴))) |
| 36 | 35 | oveq2d 7426 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (((𝐴 + 𝑦) − 𝐴) + ((𝐴 + 𝑧) − 𝐴)) = (((𝐴 + 𝑦) − 𝐴) + (𝐴 + (𝑧 − 𝐴)))) |
| 37 | 24, 33, 36 | 3eqtr4d 2781 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + (𝑦 + 𝑧)) − 𝐴) = (((𝐴 + 𝑦) − 𝐴) + ((𝐴 + 𝑧) − 𝐴))) |
| 38 | 1, 2 | grpcl 18929 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦 + 𝑧) ∈ 𝑋) |
| 39 | 13, 15, 20, 38 | syl3anc 1373 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 + 𝑧) ∈ 𝑋) |
| 40 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 𝑧) → (𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝑧))) |
| 41 | 40 | oveq1d 7425 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 𝑧) → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 + (𝑦 + 𝑧)) − 𝐴)) |
| 42 | | ovex 7443 |
. . . . . 6
⊢ ((𝐴 + (𝑦 + 𝑧)) − 𝐴) ∈ V |
| 43 | 41, 11, 42 | fvmpt 6991 |
. . . . 5
⊢ ((𝑦 + 𝑧) ∈ 𝑋 → (𝐹‘(𝑦 + 𝑧)) = ((𝐴 + (𝑦 + 𝑧)) − 𝐴)) |
| 44 | 39, 43 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐴 + (𝑦 + 𝑧)) − 𝐴)) |
| 45 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦)) |
| 46 | 45 | oveq1d 7425 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 + 𝑦) − 𝐴)) |
| 47 | | ovex 7443 |
. . . . . . 7
⊢ ((𝐴 + 𝑦) − 𝐴) ∈ V |
| 48 | 46, 11, 47 | fvmpt 6991 |
. . . . . 6
⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = ((𝐴 + 𝑦) − 𝐴)) |
| 49 | 48 | ad2antrl 728 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = ((𝐴 + 𝑦) − 𝐴)) |
| 50 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝐴 + 𝑥) = (𝐴 + 𝑧)) |
| 51 | 50 | oveq1d 7425 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 + 𝑧) − 𝐴)) |
| 52 | | ovex 7443 |
. . . . . . 7
⊢ ((𝐴 + 𝑧) − 𝐴) ∈ V |
| 53 | 51, 11, 52 | fvmpt 6991 |
. . . . . 6
⊢ (𝑧 ∈ 𝑋 → (𝐹‘𝑧) = ((𝐴 + 𝑧) − 𝐴)) |
| 54 | 53 | ad2antll 729 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = ((𝐴 + 𝑧) − 𝐴)) |
| 55 | 49, 54 | oveq12d 7428 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦) + (𝐹‘𝑧)) = (((𝐴 + 𝑦) − 𝐴) + ((𝐴 + 𝑧) − 𝐴))) |
| 56 | 37, 44, 55 | 3eqtr4d 2781 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) + (𝐹‘𝑧))) |
| 57 | 1, 1, 2, 2, 3, 3, 12, 56 | isghmd 19213 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐺)) |
| 58 | 3 | adantr 480 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐺 ∈ Grp) |
| 59 | | eqid 2736 |
. . . . . 6
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 60 | 1, 59 | grpinvcl 18975 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
| 61 | 60 | adantr 480 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
| 62 | | simpr 484 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
| 63 | | simplr 768 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
| 64 | 1, 2 | grpcl 18929 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑦 + 𝐴) ∈ 𝑋) |
| 65 | 58, 62, 63, 64 | syl3anc 1373 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑦 + 𝐴) ∈ 𝑋) |
| 66 | 1, 2 | grpcl 18929 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧
((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ (𝑦 + 𝐴) ∈ 𝑋) → (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) ∈ 𝑋) |
| 67 | 58, 61, 65, 66 | syl3anc 1373 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) ∈ 𝑋) |
| 68 | 3 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐺 ∈ Grp) |
| 69 | 65 | adantrl 716 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑦 + 𝐴) ∈ 𝑋) |
| 70 | 6 | adantrr 717 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐴 + 𝑥) ∈ 𝑋) |
| 71 | 60 | adantr 480 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
| 72 | 1, 2 | grplcan 18988 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ ((𝑦 + 𝐴) ∈ 𝑋 ∧ (𝐴 + 𝑥) ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐴) ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥)) ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥))) |
| 73 | 68, 69, 70, 71, 72 | syl13anc 1374 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥)) ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥))) |
| 74 | | eqid 2736 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 75 | 1, 2, 74, 59 | grplinv 18977 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (((invg‘𝐺)‘𝐴) + 𝐴) = (0g‘𝐺)) |
| 76 | 75 | adantr 480 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((invg‘𝐺)‘𝐴) + 𝐴) = (0g‘𝐺)) |
| 77 | 76 | oveq1d 7425 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + 𝐴) + 𝑥) = ((0g‘𝐺) + 𝑥)) |
| 78 | | simplr 768 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
| 79 | | simprl 770 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
| 80 | 1, 2 | grpass 18930 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + 𝐴) + 𝑥) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥))) |
| 81 | 68, 71, 78, 79, 80 | syl13anc 1374 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + 𝐴) + 𝑥) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥))) |
| 82 | 1, 2, 74 | grplid 18955 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((0g‘𝐺) + 𝑥) = 𝑥) |
| 83 | 82 | ad2ant2r 747 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((0g‘𝐺) + 𝑥) = 𝑥) |
| 84 | 77, 81, 83 | 3eqtr3rd 2780 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥))) |
| 85 | 84 | eqeq2d 2747 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥 ↔ (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥)))) |
| 86 | | simprr 772 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
| 87 | 1, 2, 8 | grpsubadd 19016 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ ((𝐴 + 𝑥) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝐴 + 𝑥) − 𝐴) = 𝑦 ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥))) |
| 88 | 68, 70, 78, 86, 87 | syl13anc 1374 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝐴 + 𝑥) − 𝐴) = 𝑦 ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥))) |
| 89 | 73, 85, 88 | 3bitr4d 311 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥 ↔ ((𝐴 + 𝑥) − 𝐴) = 𝑦)) |
| 90 | | eqcom 2743 |
. . . 4
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) ↔ (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥) |
| 91 | | eqcom 2743 |
. . . 4
⊢ (𝑦 = ((𝐴 + 𝑥) − 𝐴) ↔ ((𝐴 + 𝑥) − 𝐴) = 𝑦) |
| 92 | 89, 90, 91 | 3bitr4g 314 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 = (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) ↔ 𝑦 = ((𝐴 + 𝑥) − 𝐴))) |
| 93 | 11, 10, 67, 92 | f1o2d 7666 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑋–1-1-onto→𝑋) |
| 94 | 57, 93 | jca 511 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋–1-1-onto→𝑋)) |