MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjghm Structured version   Visualization version   GIF version

Theorem conjghm 18863
Description: Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjghm.f 𝐹 = (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴))
Assertion
Ref Expression
conjghm ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋1-1-onto𝑋))
Distinct variable groups:   𝑥,   𝑥, +   𝑥,𝐴   𝑥,𝐺   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem conjghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conjghm.x . . 3 𝑋 = (Base‘𝐺)
2 conjghm.p . . 3 + = (+g𝐺)
3 simpl 483 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
43adantr 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
51, 2grpcl 18583 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑥𝑋) → (𝐴 + 𝑥) ∈ 𝑋)
653expa 1117 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥𝑋) → (𝐴 + 𝑥) ∈ 𝑋)
7 simplr 766 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝐴𝑋)
8 conjghm.m . . . . . 6 = (-g𝐺)
91, 8grpsubcl 18653 . . . . 5 ((𝐺 ∈ Grp ∧ (𝐴 + 𝑥) ∈ 𝑋𝐴𝑋) → ((𝐴 + 𝑥) 𝐴) ∈ 𝑋)
104, 6, 7, 9syl3anc 1370 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥𝑋) → ((𝐴 + 𝑥) 𝐴) ∈ 𝑋)
11 conjghm.f . . . 4 𝐹 = (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴))
1210, 11fmptd 6985 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹:𝑋𝑋)
133adantr 481 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → 𝐺 ∈ Grp)
14 simplr 766 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → 𝐴𝑋)
15 simprl 768 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
161, 2grpcl 18583 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑦𝑋) → (𝐴 + 𝑦) ∈ 𝑋)
1713, 14, 15, 16syl3anc 1370 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝐴 + 𝑦) ∈ 𝑋)
181, 8grpsubcl 18653 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝐴 + 𝑦) ∈ 𝑋𝐴𝑋) → ((𝐴 + 𝑦) 𝐴) ∈ 𝑋)
1913, 17, 14, 18syl3anc 1370 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐴 + 𝑦) 𝐴) ∈ 𝑋)
20 simprr 770 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
211, 8grpsubcl 18653 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝐴𝑋) → (𝑧 𝐴) ∈ 𝑋)
2213, 20, 14, 21syl3anc 1370 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝑧 𝐴) ∈ 𝑋)
231, 2grpass 18584 . . . . . 6 ((𝐺 ∈ Grp ∧ (((𝐴 + 𝑦) 𝐴) ∈ 𝑋𝐴𝑋 ∧ (𝑧 𝐴) ∈ 𝑋)) → ((((𝐴 + 𝑦) 𝐴) + 𝐴) + (𝑧 𝐴)) = (((𝐴 + 𝑦) 𝐴) + (𝐴 + (𝑧 𝐴))))
2413, 19, 14, 22, 23syl13anc 1371 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((((𝐴 + 𝑦) 𝐴) + 𝐴) + (𝑧 𝐴)) = (((𝐴 + 𝑦) 𝐴) + (𝐴 + (𝑧 𝐴))))
251, 2, 8grpnpcan 18665 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝐴 + 𝑦) ∈ 𝑋𝐴𝑋) → (((𝐴 + 𝑦) 𝐴) + 𝐴) = (𝐴 + 𝑦))
2613, 17, 14, 25syl3anc 1370 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐴 + 𝑦) 𝐴) + 𝐴) = (𝐴 + 𝑦))
2726oveq1d 7286 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((((𝐴 + 𝑦) 𝐴) + 𝐴) + (𝑧 𝐴)) = ((𝐴 + 𝑦) + (𝑧 𝐴)))
281, 2, 8grpaddsubass 18663 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((𝐴 + 𝑦) ∈ 𝑋𝑧𝑋𝐴𝑋)) → (((𝐴 + 𝑦) + 𝑧) 𝐴) = ((𝐴 + 𝑦) + (𝑧 𝐴)))
2913, 17, 20, 14, 28syl13anc 1371 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐴 + 𝑦) + 𝑧) 𝐴) = ((𝐴 + 𝑦) + (𝑧 𝐴)))
301, 2grpass 18584 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝑦𝑋𝑧𝑋)) → ((𝐴 + 𝑦) + 𝑧) = (𝐴 + (𝑦 + 𝑧)))
3113, 14, 15, 20, 30syl13anc 1371 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐴 + 𝑦) + 𝑧) = (𝐴 + (𝑦 + 𝑧)))
3231oveq1d 7286 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐴 + 𝑦) + 𝑧) 𝐴) = ((𝐴 + (𝑦 + 𝑧)) 𝐴))
3327, 29, 323eqtr2rd 2787 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐴 + (𝑦 + 𝑧)) 𝐴) = ((((𝐴 + 𝑦) 𝐴) + 𝐴) + (𝑧 𝐴)))
341, 2, 8grpaddsubass 18663 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝑧𝑋𝐴𝑋)) → ((𝐴 + 𝑧) 𝐴) = (𝐴 + (𝑧 𝐴)))
3513, 14, 20, 14, 34syl13anc 1371 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐴 + 𝑧) 𝐴) = (𝐴 + (𝑧 𝐴)))
3635oveq2d 7287 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐴 + 𝑦) 𝐴) + ((𝐴 + 𝑧) 𝐴)) = (((𝐴 + 𝑦) 𝐴) + (𝐴 + (𝑧 𝐴))))
3724, 33, 363eqtr4d 2790 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐴 + (𝑦 + 𝑧)) 𝐴) = (((𝐴 + 𝑦) 𝐴) + ((𝐴 + 𝑧) 𝐴)))
381, 2grpcl 18583 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦 + 𝑧) ∈ 𝑋)
3913, 15, 20, 38syl3anc 1370 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 + 𝑧) ∈ 𝑋)
40 oveq2 7279 . . . . . . 7 (𝑥 = (𝑦 + 𝑧) → (𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝑧)))
4140oveq1d 7286 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → ((𝐴 + 𝑥) 𝐴) = ((𝐴 + (𝑦 + 𝑧)) 𝐴))
42 ovex 7304 . . . . . 6 ((𝐴 + (𝑦 + 𝑧)) 𝐴) ∈ V
4341, 11, 42fvmpt 6872 . . . . 5 ((𝑦 + 𝑧) ∈ 𝑋 → (𝐹‘(𝑦 + 𝑧)) = ((𝐴 + (𝑦 + 𝑧)) 𝐴))
4439, 43syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐴 + (𝑦 + 𝑧)) 𝐴))
45 oveq2 7279 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦))
4645oveq1d 7286 . . . . . . 7 (𝑥 = 𝑦 → ((𝐴 + 𝑥) 𝐴) = ((𝐴 + 𝑦) 𝐴))
47 ovex 7304 . . . . . . 7 ((𝐴 + 𝑦) 𝐴) ∈ V
4846, 11, 47fvmpt 6872 . . . . . 6 (𝑦𝑋 → (𝐹𝑦) = ((𝐴 + 𝑦) 𝐴))
4948ad2antrl 725 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) = ((𝐴 + 𝑦) 𝐴))
50 oveq2 7279 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴 + 𝑥) = (𝐴 + 𝑧))
5150oveq1d 7286 . . . . . . 7 (𝑥 = 𝑧 → ((𝐴 + 𝑥) 𝐴) = ((𝐴 + 𝑧) 𝐴))
52 ovex 7304 . . . . . . 7 ((𝐴 + 𝑧) 𝐴) ∈ V
5351, 11, 52fvmpt 6872 . . . . . 6 (𝑧𝑋 → (𝐹𝑧) = ((𝐴 + 𝑧) 𝐴))
5453ad2antll 726 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) = ((𝐴 + 𝑧) 𝐴))
5549, 54oveq12d 7289 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦) + (𝐹𝑧)) = (((𝐴 + 𝑦) 𝐴) + ((𝐴 + 𝑧) 𝐴)))
5637, 44, 553eqtr4d 2790 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) + (𝐹𝑧)))
571, 1, 2, 2, 3, 3, 12, 56isghmd 18841 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐺))
583adantr 481 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → 𝐺 ∈ Grp)
59 eqid 2740 . . . . . 6 (invg𝐺) = (invg𝐺)
601, 59grpinvcl 18625 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
6160adantr 481 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
62 simpr 485 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
63 simplr 766 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → 𝐴𝑋)
641, 2grpcl 18583 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝐴𝑋) → (𝑦 + 𝐴) ∈ 𝑋)
6558, 62, 63, 64syl3anc 1370 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → (𝑦 + 𝐴) ∈ 𝑋)
661, 2grpcl 18583 . . . 4 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐴) ∈ 𝑋 ∧ (𝑦 + 𝐴) ∈ 𝑋) → (((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) ∈ 𝑋)
6758, 61, 65, 66syl3anc 1370 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → (((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) ∈ 𝑋)
683adantr 481 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 𝐺 ∈ Grp)
6965adantrl 713 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 + 𝐴) ∈ 𝑋)
706adantrr 714 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝐴 + 𝑥) ∈ 𝑋)
7160adantr 481 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
721, 2grplcan 18635 . . . . . 6 ((𝐺 ∈ Grp ∧ ((𝑦 + 𝐴) ∈ 𝑋 ∧ (𝐴 + 𝑥) ∈ 𝑋 ∧ ((invg𝐺)‘𝐴) ∈ 𝑋)) → ((((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg𝐺)‘𝐴) + (𝐴 + 𝑥)) ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥)))
7368, 69, 70, 71, 72syl13anc 1371 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg𝐺)‘𝐴) + (𝐴 + 𝑥)) ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥)))
74 eqid 2740 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
751, 2, 74, 59grplinv 18626 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴) + 𝐴) = (0g𝐺))
7675adantr 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (((invg𝐺)‘𝐴) + 𝐴) = (0g𝐺))
7776oveq1d 7286 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((((invg𝐺)‘𝐴) + 𝐴) + 𝑥) = ((0g𝐺) + 𝑥))
78 simplr 766 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑋)
79 simprl 768 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
801, 2grpass 18584 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐴𝑋𝑥𝑋)) → ((((invg𝐺)‘𝐴) + 𝐴) + 𝑥) = (((invg𝐺)‘𝐴) + (𝐴 + 𝑥)))
8168, 71, 78, 79, 80syl13anc 1371 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((((invg𝐺)‘𝐴) + 𝐴) + 𝑥) = (((invg𝐺)‘𝐴) + (𝐴 + 𝑥)))
821, 2, 74grplid 18607 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((0g𝐺) + 𝑥) = 𝑥)
8382ad2ant2r 744 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((0g𝐺) + 𝑥) = 𝑥)
8477, 81, 833eqtr3rd 2789 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 = (((invg𝐺)‘𝐴) + (𝐴 + 𝑥)))
8584eqeq2d 2751 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥 ↔ (((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg𝐺)‘𝐴) + (𝐴 + 𝑥))))
86 simprr 770 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
871, 2, 8grpsubadd 18661 . . . . . 6 ((𝐺 ∈ Grp ∧ ((𝐴 + 𝑥) ∈ 𝑋𝐴𝑋𝑦𝑋)) → (((𝐴 + 𝑥) 𝐴) = 𝑦 ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥)))
8868, 70, 78, 86, 87syl13anc 1371 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (((𝐴 + 𝑥) 𝐴) = 𝑦 ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥)))
8973, 85, 883bitr4d 311 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥 ↔ ((𝐴 + 𝑥) 𝐴) = 𝑦))
90 eqcom 2747 . . . 4 (𝑥 = (((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) ↔ (((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥)
91 eqcom 2747 . . . 4 (𝑦 = ((𝐴 + 𝑥) 𝐴) ↔ ((𝐴 + 𝑥) 𝐴) = 𝑦)
9289, 90, 913bitr4g 314 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = (((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) ↔ 𝑦 = ((𝐴 + 𝑥) 𝐴)))
9311, 10, 67, 92f1o2d 7517 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹:𝑋1-1-onto𝑋)
9457, 93jca 512 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋1-1-onto𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  cmpt 5162  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  Basecbs 16910  +gcplusg 16960  0gc0g 17148  Grpcgrp 18575  invgcminusg 18576  -gcsg 18577   GrpHom cghm 18829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-sbg 18580  df-ghm 18830
This theorem is referenced by:  conjsubg  18864  conjsubgen  18865
  Copyright terms: Public domain W3C validator