| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | conjghm.x | . . 3
⊢ 𝑋 = (Base‘𝐺) | 
| 2 |  | conjghm.p | . . 3
⊢  + =
(+g‘𝐺) | 
| 3 |  | simpl 482 | . . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ Grp) | 
| 4 | 3 | adantr 480 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝐺 ∈ Grp) | 
| 5 | 1, 2 | grpcl 18959 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝐴 + 𝑥) ∈ 𝑋) | 
| 6 | 5 | 3expa 1119 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → (𝐴 + 𝑥) ∈ 𝑋) | 
| 7 |  | simplr 769 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑋) | 
| 8 |  | conjghm.m | . . . . . 6
⊢  − =
(-g‘𝐺) | 
| 9 | 1, 8 | grpsubcl 19038 | . . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + 𝑥) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋) | 
| 10 | 4, 6, 7, 9 | syl3anc 1373 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋) | 
| 11 |  | conjghm.f | . . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) | 
| 12 | 10, 11 | fmptd 7134 | . . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑋⟶𝑋) | 
| 13 | 3 | adantr 480 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝐺 ∈ Grp) | 
| 14 |  | simplr 769 | . . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | 
| 15 |  | simprl 771 | . . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ 𝑋) | 
| 16 | 1, 2 | grpcl 18959 | . . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴 + 𝑦) ∈ 𝑋) | 
| 17 | 13, 14, 15, 16 | syl3anc 1373 | . . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐴 + 𝑦) ∈ 𝑋) | 
| 18 | 1, 8 | grpsubcl 19038 | . . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + 𝑦) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴 + 𝑦) − 𝐴) ∈ 𝑋) | 
| 19 | 13, 17, 14, 18 | syl3anc 1373 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑦) − 𝐴) ∈ 𝑋) | 
| 20 |  | simprr 773 | . . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) | 
| 21 | 1, 8 | grpsubcl 19038 | . . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑧 − 𝐴) ∈ 𝑋) | 
| 22 | 13, 20, 14, 21 | syl3anc 1373 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧 − 𝐴) ∈ 𝑋) | 
| 23 | 1, 2 | grpass 18960 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (((𝐴 + 𝑦) − 𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑧 − 𝐴) ∈ 𝑋)) → ((((𝐴 + 𝑦) − 𝐴) + 𝐴) + (𝑧 − 𝐴)) = (((𝐴 + 𝑦) − 𝐴) + (𝐴 + (𝑧 − 𝐴)))) | 
| 24 | 13, 19, 14, 22, 23 | syl13anc 1374 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((((𝐴 + 𝑦) − 𝐴) + 𝐴) + (𝑧 − 𝐴)) = (((𝐴 + 𝑦) − 𝐴) + (𝐴 + (𝑧 − 𝐴)))) | 
| 25 | 1, 2, 8 | grpnpcan 19050 | . . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + 𝑦) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (((𝐴 + 𝑦) − 𝐴) + 𝐴) = (𝐴 + 𝑦)) | 
| 26 | 13, 17, 14, 25 | syl3anc 1373 | . . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (((𝐴 + 𝑦) − 𝐴) + 𝐴) = (𝐴 + 𝑦)) | 
| 27 | 26 | oveq1d 7446 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((((𝐴 + 𝑦) − 𝐴) + 𝐴) + (𝑧 − 𝐴)) = ((𝐴 + 𝑦) + (𝑧 − 𝐴))) | 
| 28 | 1, 2, 8 | grpaddsubass 19048 | . . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ ((𝐴 + 𝑦) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (((𝐴 + 𝑦) + 𝑧) − 𝐴) = ((𝐴 + 𝑦) + (𝑧 − 𝐴))) | 
| 29 | 13, 17, 20, 14, 28 | syl13anc 1374 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (((𝐴 + 𝑦) + 𝑧) − 𝐴) = ((𝐴 + 𝑦) + (𝑧 − 𝐴))) | 
| 30 | 1, 2 | grpass 18960 | . . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑦) + 𝑧) = (𝐴 + (𝑦 + 𝑧))) | 
| 31 | 13, 14, 15, 20, 30 | syl13anc 1374 | . . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑦) + 𝑧) = (𝐴 + (𝑦 + 𝑧))) | 
| 32 | 31 | oveq1d 7446 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (((𝐴 + 𝑦) + 𝑧) − 𝐴) = ((𝐴 + (𝑦 + 𝑧)) − 𝐴)) | 
| 33 | 27, 29, 32 | 3eqtr2rd 2784 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + (𝑦 + 𝑧)) − 𝐴) = ((((𝐴 + 𝑦) − 𝐴) + 𝐴) + (𝑧 − 𝐴))) | 
| 34 | 1, 2, 8 | grpaddsubass 19048 | . . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝑧) − 𝐴) = (𝐴 + (𝑧 − 𝐴))) | 
| 35 | 13, 14, 20, 14, 34 | syl13anc 1374 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑧) − 𝐴) = (𝐴 + (𝑧 − 𝐴))) | 
| 36 | 35 | oveq2d 7447 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (((𝐴 + 𝑦) − 𝐴) + ((𝐴 + 𝑧) − 𝐴)) = (((𝐴 + 𝑦) − 𝐴) + (𝐴 + (𝑧 − 𝐴)))) | 
| 37 | 24, 33, 36 | 3eqtr4d 2787 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + (𝑦 + 𝑧)) − 𝐴) = (((𝐴 + 𝑦) − 𝐴) + ((𝐴 + 𝑧) − 𝐴))) | 
| 38 | 1, 2 | grpcl 18959 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦 + 𝑧) ∈ 𝑋) | 
| 39 | 13, 15, 20, 38 | syl3anc 1373 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 + 𝑧) ∈ 𝑋) | 
| 40 |  | oveq2 7439 | . . . . . . 7
⊢ (𝑥 = (𝑦 + 𝑧) → (𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝑧))) | 
| 41 | 40 | oveq1d 7446 | . . . . . 6
⊢ (𝑥 = (𝑦 + 𝑧) → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 + (𝑦 + 𝑧)) − 𝐴)) | 
| 42 |  | ovex 7464 | . . . . . 6
⊢ ((𝐴 + (𝑦 + 𝑧)) − 𝐴) ∈ V | 
| 43 | 41, 11, 42 | fvmpt 7016 | . . . . 5
⊢ ((𝑦 + 𝑧) ∈ 𝑋 → (𝐹‘(𝑦 + 𝑧)) = ((𝐴 + (𝑦 + 𝑧)) − 𝐴)) | 
| 44 | 39, 43 | syl 17 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐴 + (𝑦 + 𝑧)) − 𝐴)) | 
| 45 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦)) | 
| 46 | 45 | oveq1d 7446 | . . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 + 𝑦) − 𝐴)) | 
| 47 |  | ovex 7464 | . . . . . . 7
⊢ ((𝐴 + 𝑦) − 𝐴) ∈ V | 
| 48 | 46, 11, 47 | fvmpt 7016 | . . . . . 6
⊢ (𝑦 ∈ 𝑋 → (𝐹‘𝑦) = ((𝐴 + 𝑦) − 𝐴)) | 
| 49 | 48 | ad2antrl 728 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = ((𝐴 + 𝑦) − 𝐴)) | 
| 50 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝐴 + 𝑥) = (𝐴 + 𝑧)) | 
| 51 | 50 | oveq1d 7446 | . . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 + 𝑧) − 𝐴)) | 
| 52 |  | ovex 7464 | . . . . . . 7
⊢ ((𝐴 + 𝑧) − 𝐴) ∈ V | 
| 53 | 51, 11, 52 | fvmpt 7016 | . . . . . 6
⊢ (𝑧 ∈ 𝑋 → (𝐹‘𝑧) = ((𝐴 + 𝑧) − 𝐴)) | 
| 54 | 53 | ad2antll 729 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = ((𝐴 + 𝑧) − 𝐴)) | 
| 55 | 49, 54 | oveq12d 7449 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦) + (𝐹‘𝑧)) = (((𝐴 + 𝑦) − 𝐴) + ((𝐴 + 𝑧) − 𝐴))) | 
| 56 | 37, 44, 55 | 3eqtr4d 2787 | . . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) + (𝐹‘𝑧))) | 
| 57 | 1, 1, 2, 2, 3, 3, 12, 56 | isghmd 19243 | . 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐺)) | 
| 58 | 3 | adantr 480 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐺 ∈ Grp) | 
| 59 |  | eqid 2737 | . . . . . 6
⊢
(invg‘𝐺) = (invg‘𝐺) | 
| 60 | 1, 59 | grpinvcl 19005 | . . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) | 
| 61 | 60 | adantr 480 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) | 
| 62 |  | simpr 484 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) | 
| 63 |  | simplr 769 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐴 ∈ 𝑋) | 
| 64 | 1, 2 | grpcl 18959 | . . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑦 + 𝐴) ∈ 𝑋) | 
| 65 | 58, 62, 63, 64 | syl3anc 1373 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑦 + 𝐴) ∈ 𝑋) | 
| 66 | 1, 2 | grpcl 18959 | . . . 4
⊢ ((𝐺 ∈ Grp ∧
((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ (𝑦 + 𝐴) ∈ 𝑋) → (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) ∈ 𝑋) | 
| 67 | 58, 61, 65, 66 | syl3anc 1373 | . . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) ∈ 𝑋) | 
| 68 | 3 | adantr 480 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐺 ∈ Grp) | 
| 69 | 65 | adantrl 716 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑦 + 𝐴) ∈ 𝑋) | 
| 70 | 6 | adantrr 717 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐴 + 𝑥) ∈ 𝑋) | 
| 71 | 60 | adantr 480 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) | 
| 72 | 1, 2 | grplcan 19018 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ ((𝑦 + 𝐴) ∈ 𝑋 ∧ (𝐴 + 𝑥) ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐴) ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥)) ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥))) | 
| 73 | 68, 69, 70, 71, 72 | syl13anc 1374 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥)) ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥))) | 
| 74 |  | eqid 2737 | . . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 75 | 1, 2, 74, 59 | grplinv 19007 | . . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (((invg‘𝐺)‘𝐴) + 𝐴) = (0g‘𝐺)) | 
| 76 | 75 | adantr 480 | . . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((invg‘𝐺)‘𝐴) + 𝐴) = (0g‘𝐺)) | 
| 77 | 76 | oveq1d 7446 | . . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + 𝐴) + 𝑥) = ((0g‘𝐺) + 𝑥)) | 
| 78 |  | simplr 769 | . . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | 
| 79 |  | simprl 771 | . . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) | 
| 80 | 1, 2 | grpass 18960 | . . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + 𝐴) + 𝑥) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥))) | 
| 81 | 68, 71, 78, 79, 80 | syl13anc 1374 | . . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + 𝐴) + 𝑥) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥))) | 
| 82 | 1, 2, 74 | grplid 18985 | . . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((0g‘𝐺) + 𝑥) = 𝑥) | 
| 83 | 82 | ad2ant2r 747 | . . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((0g‘𝐺) + 𝑥) = 𝑥) | 
| 84 | 77, 81, 83 | 3eqtr3rd 2786 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥))) | 
| 85 | 84 | eqeq2d 2748 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥 ↔ (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥)))) | 
| 86 |  | simprr 773 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) | 
| 87 | 1, 2, 8 | grpsubadd 19046 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ ((𝐴 + 𝑥) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝐴 + 𝑥) − 𝐴) = 𝑦 ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥))) | 
| 88 | 68, 70, 78, 86, 87 | syl13anc 1374 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝐴 + 𝑥) − 𝐴) = 𝑦 ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥))) | 
| 89 | 73, 85, 88 | 3bitr4d 311 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥 ↔ ((𝐴 + 𝑥) − 𝐴) = 𝑦)) | 
| 90 |  | eqcom 2744 | . . . 4
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) ↔ (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥) | 
| 91 |  | eqcom 2744 | . . . 4
⊢ (𝑦 = ((𝐴 + 𝑥) − 𝐴) ↔ ((𝐴 + 𝑥) − 𝐴) = 𝑦) | 
| 92 | 89, 90, 91 | 3bitr4g 314 | . . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 = (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) ↔ 𝑦 = ((𝐴 + 𝑥) − 𝐴))) | 
| 93 | 11, 10, 67, 92 | f1o2d 7687 | . 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑋–1-1-onto→𝑋) | 
| 94 | 57, 93 | jca 511 | 1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋–1-1-onto→𝑋)) |