MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij2lem4 Structured version   Visualization version   GIF version

Theorem ackbij2lem4 9998
Description: Lemma for ackbij2 9999. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypotheses
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
ackbij.g 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))
Assertion
Ref Expression
ackbij2lem4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ackbij2lem4
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . 3 (𝑎 = 𝐵 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐵))
21sseq2d 3953 . 2 (𝑎 = 𝐵 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐵)))
3 fveq2 6774 . . 3 (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏))
43sseq2d 3953 . 2 (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏)))
5 fveq2 6774 . . 3 (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘suc 𝑏))
65sseq2d 3953 . 2 (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏)))
7 fveq2 6774 . . 3 (𝑎 = 𝐴 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐴))
87sseq2d 3953 . 2 (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴)))
9 ssidd 3944 . 2 (𝐵 ∈ ω → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐵))
10 ackbij.f . . . . 5 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
11 ackbij.g . . . . 5 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥𝑦))))
1210, 11ackbij2lem3 9997 . . . 4 (𝑏 ∈ ω → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏))
1312ad2antrr 723 . . 3 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏))
14 sstr2 3928 . . 3 ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏) → ((rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏)))
1513, 14syl5com 31 . 2 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏)))
162, 4, 6, 8, 9, 15findsg 7746 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   ciun 4924  cmpt 5157   × cxp 5587  dom cdm 5589  cima 5592  suc csuc 6268  cfv 6433  ωcom 7712  reccrdg 8240  Fincfn 8733  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-r1 9522  df-dju 9659  df-card 9697
This theorem is referenced by:  ackbij2  9999
  Copyright terms: Public domain W3C validator