![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij2lem4 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 10268. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
ackbij.g | ⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) |
Ref | Expression |
---|---|
ackbij2lem4 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6896 | . . 3 ⊢ (𝑎 = 𝐵 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐵)) | |
2 | 1 | sseq2d 4009 | . 2 ⊢ (𝑎 = 𝐵 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐵))) |
3 | fveq2 6896 | . . 3 ⊢ (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏)) | |
4 | 3 | sseq2d 4009 | . 2 ⊢ (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏))) |
5 | fveq2 6896 | . . 3 ⊢ (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘suc 𝑏)) | |
6 | 5 | sseq2d 4009 | . 2 ⊢ (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏))) |
7 | fveq2 6896 | . . 3 ⊢ (𝑎 = 𝐴 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐴)) | |
8 | 7 | sseq2d 4009 | . 2 ⊢ (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴))) |
9 | ssidd 4000 | . 2 ⊢ (𝐵 ∈ ω → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐵)) | |
10 | ackbij.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
11 | ackbij.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) | |
12 | 10, 11 | ackbij2lem3 10266 | . . . 4 ⊢ (𝑏 ∈ ω → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏)) |
13 | 12 | ad2antrr 724 | . . 3 ⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑏) → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏)) |
14 | sstr2 3983 | . . 3 ⊢ ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏) → ((rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏))) | |
15 | 13, 14 | syl5com 31 | . 2 ⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑏) → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏))) |
16 | 2, 4, 6, 8, 9, 15 | findsg 7905 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∩ cin 3943 ⊆ wss 3944 ∅c0 4322 𝒫 cpw 4604 {csn 4630 ∪ ciun 4997 ↦ cmpt 5232 × cxp 5676 dom cdm 5678 “ cima 5681 suc csuc 6373 ‘cfv 6549 ωcom 7871 reccrdg 8430 Fincfn 8964 cardccrd 9960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-r1 9789 df-dju 9926 df-card 9964 |
This theorem is referenced by: ackbij2 10268 |
Copyright terms: Public domain | W3C validator |