![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij2lem4 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 10289. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
ackbij.g | ⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) |
Ref | Expression |
---|---|
ackbij2lem4 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6914 | . . 3 ⊢ (𝑎 = 𝐵 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐵)) | |
2 | 1 | sseq2d 4031 | . 2 ⊢ (𝑎 = 𝐵 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐵))) |
3 | fveq2 6914 | . . 3 ⊢ (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏)) | |
4 | 3 | sseq2d 4031 | . 2 ⊢ (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏))) |
5 | fveq2 6914 | . . 3 ⊢ (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘suc 𝑏)) | |
6 | 5 | sseq2d 4031 | . 2 ⊢ (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏))) |
7 | fveq2 6914 | . . 3 ⊢ (𝑎 = 𝐴 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐴)) | |
8 | 7 | sseq2d 4031 | . 2 ⊢ (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴))) |
9 | ssidd 4022 | . 2 ⊢ (𝐵 ∈ ω → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐵)) | |
10 | ackbij.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
11 | ackbij.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) | |
12 | 10, 11 | ackbij2lem3 10287 | . . . 4 ⊢ (𝑏 ∈ ω → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏)) |
13 | 12 | ad2antrr 726 | . . 3 ⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑏) → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏)) |
14 | sstr2 4005 | . . 3 ⊢ ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏) → ((rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏))) | |
15 | 13, 14 | syl5com 31 | . 2 ⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑏) → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏))) |
16 | 2, 4, 6, 8, 9, 15 | findsg 7927 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∩ cin 3965 ⊆ wss 3966 ∅c0 4342 𝒫 cpw 4608 {csn 4634 ∪ ciun 4999 ↦ cmpt 5234 × cxp 5691 dom cdm 5693 “ cima 5696 suc csuc 6394 ‘cfv 6569 ωcom 7894 reccrdg 8457 Fincfn 8993 cardccrd 9982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-oadd 8518 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-r1 9811 df-dju 9948 df-card 9986 |
This theorem is referenced by: ackbij2 10289 |
Copyright terms: Public domain | W3C validator |