| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij2lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij2 10136. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| ackbij.g | ⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) |
| Ref | Expression |
|---|---|
| ackbij2lem4 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . 3 ⊢ (𝑎 = 𝐵 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐵)) | |
| 2 | 1 | sseq2d 3968 | . 2 ⊢ (𝑎 = 𝐵 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐵))) |
| 3 | fveq2 6822 | . . 3 ⊢ (𝑎 = 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝑏)) | |
| 4 | 3 | sseq2d 3968 | . 2 ⊢ (𝑎 = 𝑏 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏))) |
| 5 | fveq2 6822 | . . 3 ⊢ (𝑎 = suc 𝑏 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘suc 𝑏)) | |
| 6 | 5 | sseq2d 3968 | . 2 ⊢ (𝑎 = suc 𝑏 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏))) |
| 7 | fveq2 6822 | . . 3 ⊢ (𝑎 = 𝐴 → (rec(𝐺, ∅)‘𝑎) = (rec(𝐺, ∅)‘𝐴)) | |
| 8 | 7 | sseq2d 3968 | . 2 ⊢ (𝑎 = 𝐴 → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑎) ↔ (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴))) |
| 9 | ssidd 3959 | . 2 ⊢ (𝐵 ∈ ω → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐵)) | |
| 10 | ackbij.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 11 | ackbij.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) | |
| 12 | 10, 11 | ackbij2lem3 10134 | . . . 4 ⊢ (𝑏 ∈ ω → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏)) |
| 13 | 12 | ad2antrr 726 | . . 3 ⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑏) → (rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏)) |
| 14 | sstr2 3942 | . . 3 ⊢ ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏) → ((rec(𝐺, ∅)‘𝑏) ⊆ (rec(𝐺, ∅)‘suc 𝑏) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏))) | |
| 15 | 13, 14 | syl5com 31 | . 2 ⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑏) → ((rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝑏) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘suc 𝑏))) |
| 16 | 2, 4, 6, 8, 9, 15 | findsg 7830 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 {csn 4577 ∪ ciun 4941 ↦ cmpt 5173 × cxp 5617 dom cdm 5619 “ cima 5622 suc csuc 6309 ‘cfv 6482 ωcom 7799 reccrdg 8331 Fincfn 8872 cardccrd 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-r1 9660 df-dju 9797 df-card 9835 |
| This theorem is referenced by: ackbij2 10136 |
| Copyright terms: Public domain | W3C validator |