![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem15 | Structured version Visualization version GIF version |
Description: Lemma for fin23 10458. 𝑈 is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem15 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (𝑈‘𝐴) ⊆ (𝑈‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑈‘𝑏) = (𝑈‘𝐵)) | |
2 | 1 | sseq1d 4040 | . 2 ⊢ (𝑏 = 𝐵 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝐵) ⊆ (𝑈‘𝐵))) |
3 | fveq2 6920 | . . 3 ⊢ (𝑏 = 𝑎 → (𝑈‘𝑏) = (𝑈‘𝑎)) | |
4 | 3 | sseq1d 4040 | . 2 ⊢ (𝑏 = 𝑎 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝑎) ⊆ (𝑈‘𝐵))) |
5 | fveq2 6920 | . . 3 ⊢ (𝑏 = suc 𝑎 → (𝑈‘𝑏) = (𝑈‘suc 𝑎)) | |
6 | 5 | sseq1d 4040 | . 2 ⊢ (𝑏 = suc 𝑎 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) |
7 | fveq2 6920 | . . 3 ⊢ (𝑏 = 𝐴 → (𝑈‘𝑏) = (𝑈‘𝐴)) | |
8 | 7 | sseq1d 4040 | . 2 ⊢ (𝑏 = 𝐴 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝐴) ⊆ (𝑈‘𝐵))) |
9 | ssidd 4032 | . 2 ⊢ (𝐵 ∈ ω → (𝑈‘𝐵) ⊆ (𝑈‘𝐵)) | |
10 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
11 | 10 | fin23lem13 10401 | . . . 4 ⊢ (𝑎 ∈ ω → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎)) |
12 | 11 | ad2antrr 725 | . . 3 ⊢ (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎)) |
13 | sstr2 4015 | . . 3 ⊢ ((𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎) → ((𝑈‘𝑎) ⊆ (𝑈‘𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) → ((𝑈‘𝑎) ⊆ (𝑈‘𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) |
15 | 2, 4, 6, 8, 9, 14 | findsg 7937 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (𝑈‘𝐴) ⊆ (𝑈‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ifcif 4548 ∪ cuni 4931 ran crn 5701 suc csuc 6397 ‘cfv 6573 ∈ cmpo 7450 ωcom 7903 seqωcseqom 8503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seqom 8504 |
This theorem is referenced by: fin23lem16 10404 |
Copyright terms: Public domain | W3C validator |