![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem15 | Structured version Visualization version GIF version |
Description: Lemma for fin23 10404. 𝑈 is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem15 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (𝑈‘𝐴) ⊆ (𝑈‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑈‘𝑏) = (𝑈‘𝐵)) | |
2 | 1 | sseq1d 4009 | . 2 ⊢ (𝑏 = 𝐵 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝐵) ⊆ (𝑈‘𝐵))) |
3 | fveq2 6891 | . . 3 ⊢ (𝑏 = 𝑎 → (𝑈‘𝑏) = (𝑈‘𝑎)) | |
4 | 3 | sseq1d 4009 | . 2 ⊢ (𝑏 = 𝑎 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝑎) ⊆ (𝑈‘𝐵))) |
5 | fveq2 6891 | . . 3 ⊢ (𝑏 = suc 𝑎 → (𝑈‘𝑏) = (𝑈‘suc 𝑎)) | |
6 | 5 | sseq1d 4009 | . 2 ⊢ (𝑏 = suc 𝑎 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) |
7 | fveq2 6891 | . . 3 ⊢ (𝑏 = 𝐴 → (𝑈‘𝑏) = (𝑈‘𝐴)) | |
8 | 7 | sseq1d 4009 | . 2 ⊢ (𝑏 = 𝐴 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝐴) ⊆ (𝑈‘𝐵))) |
9 | ssidd 4001 | . 2 ⊢ (𝐵 ∈ ω → (𝑈‘𝐵) ⊆ (𝑈‘𝐵)) | |
10 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
11 | 10 | fin23lem13 10347 | . . . 4 ⊢ (𝑎 ∈ ω → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎)) |
12 | 11 | ad2antrr 725 | . . 3 ⊢ (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎)) |
13 | sstr2 3985 | . . 3 ⊢ ((𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎) → ((𝑈‘𝑎) ⊆ (𝑈‘𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) → ((𝑈‘𝑎) ⊆ (𝑈‘𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) |
15 | 2, 4, 6, 8, 9, 14 | findsg 7899 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (𝑈‘𝐴) ⊆ (𝑈‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ∩ cin 3943 ⊆ wss 3944 ∅c0 4318 ifcif 4524 ∪ cuni 4903 ran crn 5673 suc csuc 6365 ‘cfv 6542 ∈ cmpo 7416 ωcom 7864 seqωcseqom 8461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-seqom 8462 |
This theorem is referenced by: fin23lem16 10350 |
Copyright terms: Public domain | W3C validator |