MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem15 Structured version   Visualization version   GIF version

Theorem fin23lem15 10293
Description: Lemma for fin23 10348. 𝑈 is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem15 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝑈𝐴) ⊆ (𝑈𝐵))
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝐵(𝑢,𝑡,𝑖)   𝑈(𝑡)

Proof of Theorem fin23lem15
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6860 . . 3 (𝑏 = 𝐵 → (𝑈𝑏) = (𝑈𝐵))
21sseq1d 3980 . 2 (𝑏 = 𝐵 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈𝐵) ⊆ (𝑈𝐵)))
3 fveq2 6860 . . 3 (𝑏 = 𝑎 → (𝑈𝑏) = (𝑈𝑎))
43sseq1d 3980 . 2 (𝑏 = 𝑎 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈𝑎) ⊆ (𝑈𝐵)))
5 fveq2 6860 . . 3 (𝑏 = suc 𝑎 → (𝑈𝑏) = (𝑈‘suc 𝑎))
65sseq1d 3980 . 2 (𝑏 = suc 𝑎 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈‘suc 𝑎) ⊆ (𝑈𝐵)))
7 fveq2 6860 . . 3 (𝑏 = 𝐴 → (𝑈𝑏) = (𝑈𝐴))
87sseq1d 3980 . 2 (𝑏 = 𝐴 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈𝐴) ⊆ (𝑈𝐵)))
9 ssidd 3972 . 2 (𝐵 ∈ ω → (𝑈𝐵) ⊆ (𝑈𝐵))
10 fin23lem.a . . . . 5 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
1110fin23lem13 10291 . . . 4 (𝑎 ∈ ω → (𝑈‘suc 𝑎) ⊆ (𝑈𝑎))
1211ad2antrr 726 . . 3 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → (𝑈‘suc 𝑎) ⊆ (𝑈𝑎))
13 sstr2 3955 . . 3 ((𝑈‘suc 𝑎) ⊆ (𝑈𝑎) → ((𝑈𝑎) ⊆ (𝑈𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈𝐵)))
1412, 13syl 17 . 2 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → ((𝑈𝑎) ⊆ (𝑈𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈𝐵)))
152, 4, 6, 8, 9, 14findsg 7875 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝑈𝐴) ⊆ (𝑈𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3915  wss 3916  c0 4298  ifcif 4490   cuni 4873  ran crn 5641  suc csuc 6336  cfv 6513  cmpo 7391  ωcom 7844  seqωcseqom 8417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-seqom 8418
This theorem is referenced by:  fin23lem16  10294
  Copyright terms: Public domain W3C validator