MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem15 Structured version   Visualization version   GIF version

Theorem fin23lem15 10378
Description: Lemma for fin23 10433. 𝑈 is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem15 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝑈𝐴) ⊆ (𝑈𝐵))
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝐵(𝑢,𝑡,𝑖)   𝑈(𝑡)

Proof of Theorem fin23lem15
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6911 . . 3 (𝑏 = 𝐵 → (𝑈𝑏) = (𝑈𝐵))
21sseq1d 4028 . 2 (𝑏 = 𝐵 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈𝐵) ⊆ (𝑈𝐵)))
3 fveq2 6911 . . 3 (𝑏 = 𝑎 → (𝑈𝑏) = (𝑈𝑎))
43sseq1d 4028 . 2 (𝑏 = 𝑎 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈𝑎) ⊆ (𝑈𝐵)))
5 fveq2 6911 . . 3 (𝑏 = suc 𝑎 → (𝑈𝑏) = (𝑈‘suc 𝑎))
65sseq1d 4028 . 2 (𝑏 = suc 𝑎 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈‘suc 𝑎) ⊆ (𝑈𝐵)))
7 fveq2 6911 . . 3 (𝑏 = 𝐴 → (𝑈𝑏) = (𝑈𝐴))
87sseq1d 4028 . 2 (𝑏 = 𝐴 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈𝐴) ⊆ (𝑈𝐵)))
9 ssidd 4020 . 2 (𝐵 ∈ ω → (𝑈𝐵) ⊆ (𝑈𝐵))
10 fin23lem.a . . . . 5 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
1110fin23lem13 10376 . . . 4 (𝑎 ∈ ω → (𝑈‘suc 𝑎) ⊆ (𝑈𝑎))
1211ad2antrr 726 . . 3 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → (𝑈‘suc 𝑎) ⊆ (𝑈𝑎))
13 sstr2 4003 . . 3 ((𝑈‘suc 𝑎) ⊆ (𝑈𝑎) → ((𝑈𝑎) ⊆ (𝑈𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈𝐵)))
1412, 13syl 17 . 2 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → ((𝑈𝑎) ⊆ (𝑈𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈𝐵)))
152, 4, 6, 8, 9, 14findsg 7924 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝑈𝐴) ⊆ (𝑈𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1538  wcel 2107  Vcvv 3479  cin 3963  wss 3964  c0 4340  ifcif 4532   cuni 4913  ran crn 5691  suc csuc 6391  cfv 6566  cmpo 7437  ωcom 7891  seqωcseqom 8492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-seqom 8493
This theorem is referenced by:  fin23lem16  10379
  Copyright terms: Public domain W3C validator