| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem15 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin23 10348. 𝑈 is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
| Ref | Expression |
|---|---|
| fin23lem15 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (𝑈‘𝐴) ⊆ (𝑈‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6860 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑈‘𝑏) = (𝑈‘𝐵)) | |
| 2 | 1 | sseq1d 3980 | . 2 ⊢ (𝑏 = 𝐵 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝐵) ⊆ (𝑈‘𝐵))) |
| 3 | fveq2 6860 | . . 3 ⊢ (𝑏 = 𝑎 → (𝑈‘𝑏) = (𝑈‘𝑎)) | |
| 4 | 3 | sseq1d 3980 | . 2 ⊢ (𝑏 = 𝑎 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝑎) ⊆ (𝑈‘𝐵))) |
| 5 | fveq2 6860 | . . 3 ⊢ (𝑏 = suc 𝑎 → (𝑈‘𝑏) = (𝑈‘suc 𝑎)) | |
| 6 | 5 | sseq1d 3980 | . 2 ⊢ (𝑏 = suc 𝑎 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) |
| 7 | fveq2 6860 | . . 3 ⊢ (𝑏 = 𝐴 → (𝑈‘𝑏) = (𝑈‘𝐴)) | |
| 8 | 7 | sseq1d 3980 | . 2 ⊢ (𝑏 = 𝐴 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝐴) ⊆ (𝑈‘𝐵))) |
| 9 | ssidd 3972 | . 2 ⊢ (𝐵 ∈ ω → (𝑈‘𝐵) ⊆ (𝑈‘𝐵)) | |
| 10 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
| 11 | 10 | fin23lem13 10291 | . . . 4 ⊢ (𝑎 ∈ ω → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎)) |
| 12 | 11 | ad2antrr 726 | . . 3 ⊢ (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎)) |
| 13 | sstr2 3955 | . . 3 ⊢ ((𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎) → ((𝑈‘𝑎) ⊆ (𝑈‘𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) → ((𝑈‘𝑎) ⊆ (𝑈‘𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) |
| 15 | 2, 4, 6, 8, 9, 14 | findsg 7875 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (𝑈‘𝐴) ⊆ (𝑈‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 ifcif 4490 ∪ cuni 4873 ran crn 5641 suc csuc 6336 ‘cfv 6513 ∈ cmpo 7391 ωcom 7844 seqωcseqom 8417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-seqom 8418 |
| This theorem is referenced by: fin23lem16 10294 |
| Copyright terms: Public domain | W3C validator |