MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem15 Structured version   Visualization version   GIF version

Theorem fin23lem15 10349
Description: Lemma for fin23 10404. 𝑈 is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem15 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝑈𝐴) ⊆ (𝑈𝐵))
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝐵(𝑢,𝑡,𝑖)   𝑈(𝑡)

Proof of Theorem fin23lem15
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . 3 (𝑏 = 𝐵 → (𝑈𝑏) = (𝑈𝐵))
21sseq1d 4009 . 2 (𝑏 = 𝐵 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈𝐵) ⊆ (𝑈𝐵)))
3 fveq2 6891 . . 3 (𝑏 = 𝑎 → (𝑈𝑏) = (𝑈𝑎))
43sseq1d 4009 . 2 (𝑏 = 𝑎 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈𝑎) ⊆ (𝑈𝐵)))
5 fveq2 6891 . . 3 (𝑏 = suc 𝑎 → (𝑈𝑏) = (𝑈‘suc 𝑎))
65sseq1d 4009 . 2 (𝑏 = suc 𝑎 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈‘suc 𝑎) ⊆ (𝑈𝐵)))
7 fveq2 6891 . . 3 (𝑏 = 𝐴 → (𝑈𝑏) = (𝑈𝐴))
87sseq1d 4009 . 2 (𝑏 = 𝐴 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈𝐴) ⊆ (𝑈𝐵)))
9 ssidd 4001 . 2 (𝐵 ∈ ω → (𝑈𝐵) ⊆ (𝑈𝐵))
10 fin23lem.a . . . . 5 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
1110fin23lem13 10347 . . . 4 (𝑎 ∈ ω → (𝑈‘suc 𝑎) ⊆ (𝑈𝑎))
1211ad2antrr 725 . . 3 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → (𝑈‘suc 𝑎) ⊆ (𝑈𝑎))
13 sstr2 3985 . . 3 ((𝑈‘suc 𝑎) ⊆ (𝑈𝑎) → ((𝑈𝑎) ⊆ (𝑈𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈𝐵)))
1412, 13syl 17 . 2 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → ((𝑈𝑎) ⊆ (𝑈𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈𝐵)))
152, 4, 6, 8, 9, 14findsg 7899 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝑈𝐴) ⊆ (𝑈𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3469  cin 3943  wss 3944  c0 4318  ifcif 4524   cuni 4903  ran crn 5673  suc csuc 6365  cfv 6542  cmpo 7416  ωcom 7864  seqωcseqom 8461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seqom 8462
This theorem is referenced by:  fin23lem16  10350
  Copyright terms: Public domain W3C validator