| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem15 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin23 10318. 𝑈 is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
| Ref | Expression |
|---|---|
| fin23lem15 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (𝑈‘𝐴) ⊆ (𝑈‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6840 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑈‘𝑏) = (𝑈‘𝐵)) | |
| 2 | 1 | sseq1d 3975 | . 2 ⊢ (𝑏 = 𝐵 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝐵) ⊆ (𝑈‘𝐵))) |
| 3 | fveq2 6840 | . . 3 ⊢ (𝑏 = 𝑎 → (𝑈‘𝑏) = (𝑈‘𝑎)) | |
| 4 | 3 | sseq1d 3975 | . 2 ⊢ (𝑏 = 𝑎 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝑎) ⊆ (𝑈‘𝐵))) |
| 5 | fveq2 6840 | . . 3 ⊢ (𝑏 = suc 𝑎 → (𝑈‘𝑏) = (𝑈‘suc 𝑎)) | |
| 6 | 5 | sseq1d 3975 | . 2 ⊢ (𝑏 = suc 𝑎 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) |
| 7 | fveq2 6840 | . . 3 ⊢ (𝑏 = 𝐴 → (𝑈‘𝑏) = (𝑈‘𝐴)) | |
| 8 | 7 | sseq1d 3975 | . 2 ⊢ (𝑏 = 𝐴 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝐴) ⊆ (𝑈‘𝐵))) |
| 9 | ssidd 3967 | . 2 ⊢ (𝐵 ∈ ω → (𝑈‘𝐵) ⊆ (𝑈‘𝐵)) | |
| 10 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
| 11 | 10 | fin23lem13 10261 | . . . 4 ⊢ (𝑎 ∈ ω → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎)) |
| 12 | 11 | ad2antrr 726 | . . 3 ⊢ (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎)) |
| 13 | sstr2 3950 | . . 3 ⊢ ((𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎) → ((𝑈‘𝑎) ⊆ (𝑈‘𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) → ((𝑈‘𝑎) ⊆ (𝑈‘𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) |
| 15 | 2, 4, 6, 8, 9, 14 | findsg 7853 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (𝑈‘𝐴) ⊆ (𝑈‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 ifcif 4484 ∪ cuni 4867 ran crn 5632 suc csuc 6322 ‘cfv 6499 ∈ cmpo 7371 ωcom 7822 seqωcseqom 8392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-seqom 8393 |
| This theorem is referenced by: fin23lem16 10264 |
| Copyright terms: Public domain | W3C validator |