| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem15 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin23 10412. 𝑈 is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin23lem.a | ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
| Ref | Expression |
|---|---|
| fin23lem15 | ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (𝑈‘𝐴) ⊆ (𝑈‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6887 | . . 3 ⊢ (𝑏 = 𝐵 → (𝑈‘𝑏) = (𝑈‘𝐵)) | |
| 2 | 1 | sseq1d 3997 | . 2 ⊢ (𝑏 = 𝐵 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝐵) ⊆ (𝑈‘𝐵))) |
| 3 | fveq2 6887 | . . 3 ⊢ (𝑏 = 𝑎 → (𝑈‘𝑏) = (𝑈‘𝑎)) | |
| 4 | 3 | sseq1d 3997 | . 2 ⊢ (𝑏 = 𝑎 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝑎) ⊆ (𝑈‘𝐵))) |
| 5 | fveq2 6887 | . . 3 ⊢ (𝑏 = suc 𝑎 → (𝑈‘𝑏) = (𝑈‘suc 𝑎)) | |
| 6 | 5 | sseq1d 3997 | . 2 ⊢ (𝑏 = suc 𝑎 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) |
| 7 | fveq2 6887 | . . 3 ⊢ (𝑏 = 𝐴 → (𝑈‘𝑏) = (𝑈‘𝐴)) | |
| 8 | 7 | sseq1d 3997 | . 2 ⊢ (𝑏 = 𝐴 → ((𝑈‘𝑏) ⊆ (𝑈‘𝐵) ↔ (𝑈‘𝐴) ⊆ (𝑈‘𝐵))) |
| 9 | ssidd 3989 | . 2 ⊢ (𝐵 ∈ ω → (𝑈‘𝐵) ⊆ (𝑈‘𝐵)) | |
| 10 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
| 11 | 10 | fin23lem13 10355 | . . . 4 ⊢ (𝑎 ∈ ω → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎)) |
| 12 | 11 | ad2antrr 726 | . . 3 ⊢ (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎)) |
| 13 | sstr2 3972 | . . 3 ⊢ ((𝑈‘suc 𝑎) ⊆ (𝑈‘𝑎) → ((𝑈‘𝑎) ⊆ (𝑈‘𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑎) → ((𝑈‘𝑎) ⊆ (𝑈‘𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈‘𝐵))) |
| 15 | 2, 4, 6, 8, 9, 14 | findsg 7902 | 1 ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (𝑈‘𝐴) ⊆ (𝑈‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∩ cin 3932 ⊆ wss 3933 ∅c0 4315 ifcif 4507 ∪ cuni 4889 ran crn 5668 suc csuc 6367 ‘cfv 6542 ∈ cmpo 7416 ωcom 7870 seqωcseqom 8470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-seqom 8471 |
| This theorem is referenced by: fin23lem16 10358 |
| Copyright terms: Public domain | W3C validator |