MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem15 Structured version   Visualization version   GIF version

Theorem fin23lem15 10263
Description: Lemma for fin23 10318. 𝑈 is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
Assertion
Ref Expression
fin23lem15 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝑈𝐴) ⊆ (𝑈𝐵))
Distinct variable groups:   𝑡,𝑖,𝑢   𝐴,𝑖,𝑢   𝑈,𝑖,𝑢
Allowed substitution hints:   𝐴(𝑡)   𝐵(𝑢,𝑡,𝑖)   𝑈(𝑡)

Proof of Theorem fin23lem15
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . 3 (𝑏 = 𝐵 → (𝑈𝑏) = (𝑈𝐵))
21sseq1d 3975 . 2 (𝑏 = 𝐵 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈𝐵) ⊆ (𝑈𝐵)))
3 fveq2 6840 . . 3 (𝑏 = 𝑎 → (𝑈𝑏) = (𝑈𝑎))
43sseq1d 3975 . 2 (𝑏 = 𝑎 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈𝑎) ⊆ (𝑈𝐵)))
5 fveq2 6840 . . 3 (𝑏 = suc 𝑎 → (𝑈𝑏) = (𝑈‘suc 𝑎))
65sseq1d 3975 . 2 (𝑏 = suc 𝑎 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈‘suc 𝑎) ⊆ (𝑈𝐵)))
7 fveq2 6840 . . 3 (𝑏 = 𝐴 → (𝑈𝑏) = (𝑈𝐴))
87sseq1d 3975 . 2 (𝑏 = 𝐴 → ((𝑈𝑏) ⊆ (𝑈𝐵) ↔ (𝑈𝐴) ⊆ (𝑈𝐵)))
9 ssidd 3967 . 2 (𝐵 ∈ ω → (𝑈𝐵) ⊆ (𝑈𝐵))
10 fin23lem.a . . . . 5 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
1110fin23lem13 10261 . . . 4 (𝑎 ∈ ω → (𝑈‘suc 𝑎) ⊆ (𝑈𝑎))
1211ad2antrr 726 . . 3 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → (𝑈‘suc 𝑎) ⊆ (𝑈𝑎))
13 sstr2 3950 . . 3 ((𝑈‘suc 𝑎) ⊆ (𝑈𝑎) → ((𝑈𝑎) ⊆ (𝑈𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈𝐵)))
1412, 13syl 17 . 2 (((𝑎 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑎) → ((𝑈𝑎) ⊆ (𝑈𝐵) → (𝑈‘suc 𝑎) ⊆ (𝑈𝐵)))
152, 4, 6, 8, 9, 14findsg 7853 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝑈𝐴) ⊆ (𝑈𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910  wss 3911  c0 4292  ifcif 4484   cuni 4867  ran crn 5632  suc csuc 6322  cfv 6499  cmpo 7371  ωcom 7822  seqωcseqom 8392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seqom 8393
This theorem is referenced by:  fin23lem16  10264
  Copyright terms: Public domain W3C validator