MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fipwss Structured version   Visualization version   GIF version

Theorem fipwss 9420
Description: If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fipwss (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋)

Proof of Theorem fipwss
StepHypRef Expression
1 fiuni 9419 . . . . 5 (𝐴 ∈ V → 𝐴 = (fi‘𝐴))
21sseq1d 4005 . . . 4 (𝐴 ∈ V → ( 𝐴𝑋 (fi‘𝐴) ⊆ 𝑋))
3 sspwuni 5093 . . . 4 (𝐴 ⊆ 𝒫 𝑋 𝐴𝑋)
4 sspwuni 5093 . . . 4 ((fi‘𝐴) ⊆ 𝒫 𝑋 (fi‘𝐴) ⊆ 𝑋)
52, 3, 43bitr4g 314 . . 3 (𝐴 ∈ V → (𝐴 ⊆ 𝒫 𝑋 ↔ (fi‘𝐴) ⊆ 𝒫 𝑋))
65biimpa 476 . 2 ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋)
7 fvprc 6873 . . . 4 𝐴 ∈ V → (fi‘𝐴) = ∅)
8 0ss 4388 . . . 4 ∅ ⊆ 𝒫 𝑋
97, 8eqsstrdi 4028 . . 3 𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 𝑋)
109adantr 480 . 2 ((¬ 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋)
116, 10pm2.61ian 809 1 (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2098  Vcvv 3466  wss 3940  c0 4314  𝒫 cpw 4594   cuni 4899  cfv 6533  ficfi 9401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-om 7849  df-1o 8461  df-er 8699  df-en 8936  df-fin 8939  df-fi 9402
This theorem is referenced by:  fsubbas  23693
  Copyright terms: Public domain W3C validator