MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fipwss Structured version   Visualization version   GIF version

Theorem fipwss 9313
Description: If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fipwss (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋)

Proof of Theorem fipwss
StepHypRef Expression
1 fiuni 9312 . . . . 5 (𝐴 ∈ V → 𝐴 = (fi‘𝐴))
21sseq1d 3961 . . . 4 (𝐴 ∈ V → ( 𝐴𝑋 (fi‘𝐴) ⊆ 𝑋))
3 sspwuni 5046 . . . 4 (𝐴 ⊆ 𝒫 𝑋 𝐴𝑋)
4 sspwuni 5046 . . . 4 ((fi‘𝐴) ⊆ 𝒫 𝑋 (fi‘𝐴) ⊆ 𝑋)
52, 3, 43bitr4g 314 . . 3 (𝐴 ∈ V → (𝐴 ⊆ 𝒫 𝑋 ↔ (fi‘𝐴) ⊆ 𝒫 𝑋))
65biimpa 476 . 2 ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋)
7 fvprc 6814 . . . 4 𝐴 ∈ V → (fi‘𝐴) = ∅)
8 0ss 4347 . . . 4 ∅ ⊆ 𝒫 𝑋
97, 8eqsstrdi 3974 . . 3 𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 𝑋)
109adantr 480 . 2 ((¬ 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋)
116, 10pm2.61ian 811 1 (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2111  Vcvv 3436  wss 3897  c0 4280  𝒫 cpw 4547   cuni 4856  cfv 6481  ficfi 9294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-2o 8386  df-en 8870  df-fin 8873  df-fi 9295
This theorem is referenced by:  fsubbas  23782
  Copyright terms: Public domain W3C validator