![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fipwss | Structured version Visualization version GIF version |
Description: If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fipwss | ⊢ (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fiuni 9419 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 = ∪ (fi‘𝐴)) | |
2 | 1 | sseq1d 4005 | . . . 4 ⊢ (𝐴 ∈ V → (∪ 𝐴 ⊆ 𝑋 ↔ ∪ (fi‘𝐴) ⊆ 𝑋)) |
3 | sspwuni 5093 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 𝑋 ↔ ∪ 𝐴 ⊆ 𝑋) | |
4 | sspwuni 5093 | . . . 4 ⊢ ((fi‘𝐴) ⊆ 𝒫 𝑋 ↔ ∪ (fi‘𝐴) ⊆ 𝑋) | |
5 | 2, 3, 4 | 3bitr4g 314 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ⊆ 𝒫 𝑋 ↔ (fi‘𝐴) ⊆ 𝒫 𝑋)) |
6 | 5 | biimpa 476 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋) |
7 | fvprc 6873 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) = ∅) | |
8 | 0ss 4388 | . . . 4 ⊢ ∅ ⊆ 𝒫 𝑋 | |
9 | 7, 8 | eqsstrdi 4028 | . . 3 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 𝑋) |
10 | 9 | adantr 480 | . 2 ⊢ ((¬ 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋) |
11 | 6, 10 | pm2.61ian 809 | 1 ⊢ (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 Vcvv 3466 ⊆ wss 3940 ∅c0 4314 𝒫 cpw 4594 ∪ cuni 4899 ‘cfv 6533 ficfi 9401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-om 7849 df-1o 8461 df-er 8699 df-en 8936 df-fin 8939 df-fi 9402 |
This theorem is referenced by: fsubbas 23693 |
Copyright terms: Public domain | W3C validator |