![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fipwss | Structured version Visualization version GIF version |
Description: If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fipwss | ⊢ (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fiuni 9443 | . . . . 5 ⊢ (𝐴 ∈ V → ∪ 𝐴 = ∪ (fi‘𝐴)) | |
2 | 1 | sseq1d 4009 | . . . 4 ⊢ (𝐴 ∈ V → (∪ 𝐴 ⊆ 𝑋 ↔ ∪ (fi‘𝐴) ⊆ 𝑋)) |
3 | sspwuni 5097 | . . . 4 ⊢ (𝐴 ⊆ 𝒫 𝑋 ↔ ∪ 𝐴 ⊆ 𝑋) | |
4 | sspwuni 5097 | . . . 4 ⊢ ((fi‘𝐴) ⊆ 𝒫 𝑋 ↔ ∪ (fi‘𝐴) ⊆ 𝑋) | |
5 | 2, 3, 4 | 3bitr4g 314 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ⊆ 𝒫 𝑋 ↔ (fi‘𝐴) ⊆ 𝒫 𝑋)) |
6 | 5 | biimpa 476 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋) |
7 | fvprc 6883 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) = ∅) | |
8 | 0ss 4392 | . . . 4 ⊢ ∅ ⊆ 𝒫 𝑋 | |
9 | 7, 8 | eqsstrdi 4032 | . . 3 ⊢ (¬ 𝐴 ∈ V → (fi‘𝐴) ⊆ 𝒫 𝑋) |
10 | 9 | adantr 480 | . 2 ⊢ ((¬ 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋) |
11 | 6, 10 | pm2.61ian 811 | 1 ⊢ (𝐴 ⊆ 𝒫 𝑋 → (fi‘𝐴) ⊆ 𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2099 Vcvv 3469 ⊆ wss 3944 ∅c0 4318 𝒫 cpw 4598 ∪ cuni 4903 ‘cfv 6542 ficfi 9425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7865 df-1o 8480 df-er 8718 df-en 8956 df-fin 8959 df-fi 9426 |
This theorem is referenced by: fsubbas 23758 |
Copyright terms: Public domain | W3C validator |