| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppmptdm | Structured version Visualization version GIF version | ||
| Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppmptdm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) |
| fsuppmptdm.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsuppmptdm.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) |
| fsuppmptdm.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fsuppmptdm | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppmptdm.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) | |
| 2 | fsuppmptdm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) | |
| 3 | 1, 2 | fmptd 7104 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
| 4 | fsuppmptdm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 5 | fsuppmptdm.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 6 | 3, 4, 5 | fdmfifsupp 9387 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ↦ cmpt 5201 Fincfn 8959 finSupp cfsupp 9373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-supp 8160 df-1o 8480 df-en 8960 df-fin 8963 df-fsupp 9374 |
| This theorem is referenced by: gsummptfidmadd 19906 gsummptfidmsplit 19911 gsummptfidmsplitres 19912 gsummptshft 19917 gsummptfidminv 19928 gsummptfidmsub 19931 gsumzunsnd 19937 gsummptf1o 19944 srgbinomlem3 20188 srgbinomlem4 20189 psrass1 21924 mamuass 22340 mamuvs1 22343 mamuvs2 22344 dmatmul 22435 mavmulass 22487 mdetrsca 22541 smadiadetlem3 22606 mat2pmatmul 22669 decpmatmul 22710 cpmadugsumlemB 22812 cpmadugsumlemC 22813 tsmsxplem1 24091 tsmsxplem2 24092 plypf1 26169 taylpfval 26324 lgseisenlem3 27340 lgseisenlem4 27341 gsummpt2d 33043 gsummptres 33046 gsummulgc2 33054 gsumvsca1 33223 gsumvsca2 33224 fldextrspunlsplem 33714 mdetpmtr1 33854 esumpfinval 34106 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |