MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmptdm Structured version   Visualization version   GIF version

Theorem fsuppmptdm 9376
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.)
Hypotheses
Ref Expression
fsuppmptdm.f 𝐹 = (𝑥𝐴𝑌)
fsuppmptdm.a (𝜑𝐴 ∈ Fin)
fsuppmptdm.y ((𝜑𝑥𝐴) → 𝑌𝑉)
fsuppmptdm.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fsuppmptdm (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem fsuppmptdm
StepHypRef Expression
1 fsuppmptdm.y . . 3 ((𝜑𝑥𝐴) → 𝑌𝑉)
2 fsuppmptdm.f . . 3 𝐹 = (𝑥𝐴𝑌)
31, 2fmptd 7115 . 2 (𝜑𝐹:𝐴𝑉)
4 fsuppmptdm.a . 2 (𝜑𝐴 ∈ Fin)
5 fsuppmptdm.z . 2 (𝜑𝑍𝑊)
63, 4, 5fdmfifsupp 9375 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   class class class wbr 5148  cmpt 5231  Fincfn 8941   finSupp cfsupp 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-supp 8149  df-1o 8468  df-en 8942  df-fin 8945  df-fsupp 9364
This theorem is referenced by:  gsummptfidmadd  19795  gsummptfidmsplit  19800  gsummptfidmsplitres  19801  gsummptshft  19806  gsummptfidminv  19817  gsummptfidmsub  19820  gsumzunsnd  19826  gsummptf1o  19833  srgbinomlem3  20053  srgbinomlem4  20054  psrass1  21531  mamuass  21909  mamuvs1  21912  mamuvs2  21913  dmatmul  22006  mavmulass  22058  mdetrsca  22112  smadiadetlem3  22177  mat2pmatmul  22240  decpmatmul  22281  cpmadugsumlemB  22383  cpmadugsumlemC  22384  tsmsxplem1  23664  tsmsxplem2  23665  plypf1  25733  taylpfval  25884  lgseisenlem3  26887  lgseisenlem4  26888  gsummpt2d  32242  gsummptres  32245  gsumvsca1  32412  gsumvsca2  32413  mdetpmtr1  32872  esumpfinval  33142  aacllem  47926
  Copyright terms: Public domain W3C validator