| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppmptdm | Structured version Visualization version GIF version | ||
| Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppmptdm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) |
| fsuppmptdm.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsuppmptdm.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) |
| fsuppmptdm.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fsuppmptdm | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppmptdm.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) | |
| 2 | fsuppmptdm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) | |
| 3 | 1, 2 | fmptd 7052 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
| 4 | fsuppmptdm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 5 | fsuppmptdm.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 6 | 3, 4, 5 | fdmfifsupp 9284 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ↦ cmpt 5176 Fincfn 8879 finSupp cfsupp 9270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-supp 8101 df-1o 8395 df-en 8880 df-fin 8883 df-fsupp 9271 |
| This theorem is referenced by: gsummptfidmadd 19822 gsummptfidmsplit 19827 gsummptfidmsplitres 19828 gsummptshft 19833 gsummptfidminv 19844 gsummptfidmsub 19847 gsumzunsnd 19853 gsummptf1o 19860 srgbinomlem3 20131 srgbinomlem4 20132 psrass1 21889 mamuass 22305 mamuvs1 22308 mamuvs2 22309 dmatmul 22400 mavmulass 22452 mdetrsca 22506 smadiadetlem3 22571 mat2pmatmul 22634 decpmatmul 22675 cpmadugsumlemB 22777 cpmadugsumlemC 22778 tsmsxplem1 24056 tsmsxplem2 24057 plypf1 26133 taylpfval 26288 lgseisenlem3 27304 lgseisenlem4 27305 gsummpt2d 33015 gsummptres 33018 gsummulgc2 33026 gsumvsca1 33181 gsumvsca2 33182 fldextrspunlsplem 33647 mdetpmtr1 33792 esumpfinval 34044 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |