![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppmptdm | Structured version Visualization version GIF version |
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.) |
Ref | Expression |
---|---|
fsuppmptdm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) |
fsuppmptdm.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsuppmptdm.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) |
fsuppmptdm.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
Ref | Expression |
---|---|
fsuppmptdm | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppmptdm.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) | |
2 | fsuppmptdm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) | |
3 | 1, 2 | fmptd 7118 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
4 | fsuppmptdm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | fsuppmptdm.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
6 | 3, 4, 5 | fdmfifsupp 9387 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ↦ cmpt 5225 Fincfn 8953 finSupp cfsupp 9375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-supp 8158 df-1o 8478 df-en 8954 df-fin 8957 df-fsupp 9376 |
This theorem is referenced by: gsummptfidmadd 19864 gsummptfidmsplit 19869 gsummptfidmsplitres 19870 gsummptshft 19875 gsummptfidminv 19886 gsummptfidmsub 19889 gsumzunsnd 19895 gsummptf1o 19902 srgbinomlem3 20152 srgbinomlem4 20153 psrass1 21886 mamuass 22276 mamuvs1 22279 mamuvs2 22280 dmatmul 22373 mavmulass 22425 mdetrsca 22479 smadiadetlem3 22544 mat2pmatmul 22607 decpmatmul 22648 cpmadugsumlemB 22750 cpmadugsumlemC 22751 tsmsxplem1 24031 tsmsxplem2 24032 plypf1 26120 taylpfval 26273 lgseisenlem3 27284 lgseisenlem4 27285 gsummpt2d 32728 gsummptres 32731 gsumvsca1 32898 gsumvsca2 32899 mdetpmtr1 33347 esumpfinval 33617 aacllem 48147 |
Copyright terms: Public domain | W3C validator |