| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppmptdm | Structured version Visualization version GIF version | ||
| Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppmptdm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) |
| fsuppmptdm.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsuppmptdm.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) |
| fsuppmptdm.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fsuppmptdm | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppmptdm.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) | |
| 2 | fsuppmptdm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) | |
| 3 | 1, 2 | fmptd 7086 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
| 4 | fsuppmptdm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 5 | fsuppmptdm.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 6 | 3, 4, 5 | fdmfifsupp 9326 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ↦ cmpt 5188 Fincfn 8918 finSupp cfsupp 9312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-supp 8140 df-1o 8434 df-en 8919 df-fin 8922 df-fsupp 9313 |
| This theorem is referenced by: gsummptfidmadd 19855 gsummptfidmsplit 19860 gsummptfidmsplitres 19861 gsummptshft 19866 gsummptfidminv 19877 gsummptfidmsub 19880 gsumzunsnd 19886 gsummptf1o 19893 srgbinomlem3 20137 srgbinomlem4 20138 psrass1 21873 mamuass 22289 mamuvs1 22292 mamuvs2 22293 dmatmul 22384 mavmulass 22436 mdetrsca 22490 smadiadetlem3 22555 mat2pmatmul 22618 decpmatmul 22659 cpmadugsumlemB 22761 cpmadugsumlemC 22762 tsmsxplem1 24040 tsmsxplem2 24041 plypf1 26117 taylpfval 26272 lgseisenlem3 27288 lgseisenlem4 27289 gsummpt2d 32989 gsummptres 32992 gsummulgc2 33000 gsumvsca1 33179 gsumvsca2 33180 fldextrspunlsplem 33668 mdetpmtr1 33813 esumpfinval 34065 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |