![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppmptdm | Structured version Visualization version GIF version |
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.) |
Ref | Expression |
---|---|
fsuppmptdm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) |
fsuppmptdm.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsuppmptdm.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) |
fsuppmptdm.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
Ref | Expression |
---|---|
fsuppmptdm | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppmptdm.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) | |
2 | fsuppmptdm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) | |
3 | 1, 2 | fmptd 7148 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
4 | fsuppmptdm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | fsuppmptdm.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
6 | 3, 4, 5 | fdmfifsupp 9444 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ↦ cmpt 5249 Fincfn 9003 finSupp cfsupp 9431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-supp 8202 df-1o 8522 df-en 9004 df-fin 9007 df-fsupp 9432 |
This theorem is referenced by: gsummptfidmadd 19967 gsummptfidmsplit 19972 gsummptfidmsplitres 19973 gsummptshft 19978 gsummptfidminv 19989 gsummptfidmsub 19992 gsumzunsnd 19998 gsummptf1o 20005 srgbinomlem3 20255 srgbinomlem4 20256 psrass1 22007 mamuass 22427 mamuvs1 22430 mamuvs2 22431 dmatmul 22524 mavmulass 22576 mdetrsca 22630 smadiadetlem3 22695 mat2pmatmul 22758 decpmatmul 22799 cpmadugsumlemB 22901 cpmadugsumlemC 22902 tsmsxplem1 24182 tsmsxplem2 24183 plypf1 26271 taylpfval 26424 lgseisenlem3 27439 lgseisenlem4 27440 gsummpt2d 33032 gsummptres 33035 gsumvsca1 33205 gsumvsca2 33206 mdetpmtr1 33769 esumpfinval 34039 aacllem 48895 |
Copyright terms: Public domain | W3C validator |