| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppmptdm | Structured version Visualization version GIF version | ||
| Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppmptdm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) |
| fsuppmptdm.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsuppmptdm.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) |
| fsuppmptdm.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fsuppmptdm | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppmptdm.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) | |
| 2 | fsuppmptdm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) | |
| 3 | 1, 2 | fmptd 7068 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
| 4 | fsuppmptdm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 5 | fsuppmptdm.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 6 | 3, 4, 5 | fdmfifsupp 9302 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ↦ cmpt 5183 Fincfn 8895 finSupp cfsupp 9288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-supp 8117 df-1o 8411 df-en 8896 df-fin 8899 df-fsupp 9289 |
| This theorem is referenced by: gsummptfidmadd 19831 gsummptfidmsplit 19836 gsummptfidmsplitres 19837 gsummptshft 19842 gsummptfidminv 19853 gsummptfidmsub 19856 gsumzunsnd 19862 gsummptf1o 19869 srgbinomlem3 20113 srgbinomlem4 20114 psrass1 21849 mamuass 22265 mamuvs1 22268 mamuvs2 22269 dmatmul 22360 mavmulass 22412 mdetrsca 22466 smadiadetlem3 22531 mat2pmatmul 22594 decpmatmul 22635 cpmadugsumlemB 22737 cpmadugsumlemC 22738 tsmsxplem1 24016 tsmsxplem2 24017 plypf1 26093 taylpfval 26248 lgseisenlem3 27264 lgseisenlem4 27265 gsummpt2d 32962 gsummptres 32965 gsummulgc2 32973 gsumvsca1 33152 gsumvsca2 33153 fldextrspunlsplem 33641 mdetpmtr1 33786 esumpfinval 34038 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |