MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmptdm Structured version   Visualization version   GIF version

Theorem fsuppmptdm 9445
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.)
Hypotheses
Ref Expression
fsuppmptdm.f 𝐹 = (𝑥𝐴𝑌)
fsuppmptdm.a (𝜑𝐴 ∈ Fin)
fsuppmptdm.y ((𝜑𝑥𝐴) → 𝑌𝑉)
fsuppmptdm.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fsuppmptdm (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem fsuppmptdm
StepHypRef Expression
1 fsuppmptdm.y . . 3 ((𝜑𝑥𝐴) → 𝑌𝑉)
2 fsuppmptdm.f . . 3 𝐹 = (𝑥𝐴𝑌)
31, 2fmptd 7148 . 2 (𝜑𝐹:𝐴𝑉)
4 fsuppmptdm.a . 2 (𝜑𝐴 ∈ Fin)
5 fsuppmptdm.z . 2 (𝜑𝑍𝑊)
63, 4, 5fdmfifsupp 9444 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  cmpt 5249  Fincfn 9003   finSupp cfsupp 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-supp 8202  df-1o 8522  df-en 9004  df-fin 9007  df-fsupp 9432
This theorem is referenced by:  gsummptfidmadd  19967  gsummptfidmsplit  19972  gsummptfidmsplitres  19973  gsummptshft  19978  gsummptfidminv  19989  gsummptfidmsub  19992  gsumzunsnd  19998  gsummptf1o  20005  srgbinomlem3  20255  srgbinomlem4  20256  psrass1  22007  mamuass  22427  mamuvs1  22430  mamuvs2  22431  dmatmul  22524  mavmulass  22576  mdetrsca  22630  smadiadetlem3  22695  mat2pmatmul  22758  decpmatmul  22799  cpmadugsumlemB  22901  cpmadugsumlemC  22902  tsmsxplem1  24182  tsmsxplem2  24183  plypf1  26271  taylpfval  26424  lgseisenlem3  27439  lgseisenlem4  27440  gsummpt2d  33032  gsummptres  33035  gsumvsca1  33205  gsumvsca2  33206  mdetpmtr1  33769  esumpfinval  34039  aacllem  48895
  Copyright terms: Public domain W3C validator