MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmptdm Structured version   Visualization version   GIF version

Theorem fsuppmptdm 9271
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.)
Hypotheses
Ref Expression
fsuppmptdm.f 𝐹 = (𝑥𝐴𝑌)
fsuppmptdm.a (𝜑𝐴 ∈ Fin)
fsuppmptdm.y ((𝜑𝑥𝐴) → 𝑌𝑉)
fsuppmptdm.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fsuppmptdm (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem fsuppmptdm
StepHypRef Expression
1 fsuppmptdm.y . . 3 ((𝜑𝑥𝐴) → 𝑌𝑉)
2 fsuppmptdm.f . . 3 𝐹 = (𝑥𝐴𝑌)
31, 2fmptd 7056 . 2 (𝜑𝐹:𝐴𝑉)
4 fsuppmptdm.a . 2 (𝜑𝐴 ∈ Fin)
5 fsuppmptdm.z . 2 (𝜑𝑍𝑊)
63, 4, 5fdmfifsupp 9270 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  cmpt 5176  Fincfn 8879   finSupp cfsupp 9256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-supp 8100  df-1o 8394  df-en 8880  df-fin 8883  df-fsupp 9257
This theorem is referenced by:  gsummptfidmadd  19845  gsummptfidmsplit  19850  gsummptfidmsplitres  19851  gsummptshft  19856  gsummptfidminv  19867  gsummptfidmsub  19870  gsumzunsnd  19876  gsummptf1o  19883  srgbinomlem3  20154  srgbinomlem4  20155  psrass1  21910  mamuass  22337  mamuvs1  22340  mamuvs2  22341  dmatmul  22432  mavmulass  22484  mdetrsca  22538  smadiadetlem3  22603  mat2pmatmul  22666  decpmatmul  22707  cpmadugsumlemB  22809  cpmadugsumlemC  22810  tsmsxplem1  24088  tsmsxplem2  24089  plypf1  26164  taylpfval  26319  lgseisenlem3  27335  lgseisenlem4  27336  gsummpt2d  33060  gsummptres  33063  gsummptf1od  33066  gsummulgc2  33077  gsummulsubdishift1  33079  gsumvsca1  33236  gsumvsca2  33237  fldextrspunlsplem  33758  extdgfialglem2  33778  mdetpmtr1  33908  esumpfinval  34160  aacllem  49962
  Copyright terms: Public domain W3C validator