| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsuppmptdm | Structured version Visualization version GIF version | ||
| Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.) |
| Ref | Expression |
|---|---|
| fsuppmptdm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) |
| fsuppmptdm.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsuppmptdm.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) |
| fsuppmptdm.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fsuppmptdm | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppmptdm.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) | |
| 2 | fsuppmptdm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) | |
| 3 | 1, 2 | fmptd 7056 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
| 4 | fsuppmptdm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 5 | fsuppmptdm.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
| 6 | 3, 4, 5 | fdmfifsupp 9270 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ↦ cmpt 5176 Fincfn 8879 finSupp cfsupp 9256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-supp 8100 df-1o 8394 df-en 8880 df-fin 8883 df-fsupp 9257 |
| This theorem is referenced by: gsummptfidmadd 19845 gsummptfidmsplit 19850 gsummptfidmsplitres 19851 gsummptshft 19856 gsummptfidminv 19867 gsummptfidmsub 19870 gsumzunsnd 19876 gsummptf1o 19883 srgbinomlem3 20154 srgbinomlem4 20155 psrass1 21910 mamuass 22337 mamuvs1 22340 mamuvs2 22341 dmatmul 22432 mavmulass 22484 mdetrsca 22538 smadiadetlem3 22603 mat2pmatmul 22666 decpmatmul 22707 cpmadugsumlemB 22809 cpmadugsumlemC 22810 tsmsxplem1 24088 tsmsxplem2 24089 plypf1 26164 taylpfval 26319 lgseisenlem3 27335 lgseisenlem4 27336 gsummpt2d 33060 gsummptres 33063 gsummptf1od 33066 gsummulgc2 33077 gsummulsubdishift1 33079 gsumvsca1 33236 gsumvsca2 33237 fldextrspunlsplem 33758 extdgfialglem2 33778 mdetpmtr1 33908 esumpfinval 34160 aacllem 49962 |
| Copyright terms: Public domain | W3C validator |