MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmptdm Structured version   Visualization version   GIF version

Theorem fsuppmptdm 9303
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.)
Hypotheses
Ref Expression
fsuppmptdm.f 𝐹 = (𝑥𝐴𝑌)
fsuppmptdm.a (𝜑𝐴 ∈ Fin)
fsuppmptdm.y ((𝜑𝑥𝐴) → 𝑌𝑉)
fsuppmptdm.z (𝜑𝑍𝑊)
Assertion
Ref Expression
fsuppmptdm (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem fsuppmptdm
StepHypRef Expression
1 fsuppmptdm.y . . 3 ((𝜑𝑥𝐴) → 𝑌𝑉)
2 fsuppmptdm.f . . 3 𝐹 = (𝑥𝐴𝑌)
31, 2fmptd 7068 . 2 (𝜑𝐹:𝐴𝑉)
4 fsuppmptdm.a . 2 (𝜑𝐴 ∈ Fin)
5 fsuppmptdm.z . 2 (𝜑𝑍𝑊)
63, 4, 5fdmfifsupp 9302 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cmpt 5183  Fincfn 8895   finSupp cfsupp 9288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-supp 8117  df-1o 8411  df-en 8896  df-fin 8899  df-fsupp 9289
This theorem is referenced by:  gsummptfidmadd  19831  gsummptfidmsplit  19836  gsummptfidmsplitres  19837  gsummptshft  19842  gsummptfidminv  19853  gsummptfidmsub  19856  gsumzunsnd  19862  gsummptf1o  19869  srgbinomlem3  20113  srgbinomlem4  20114  psrass1  21849  mamuass  22265  mamuvs1  22268  mamuvs2  22269  dmatmul  22360  mavmulass  22412  mdetrsca  22466  smadiadetlem3  22531  mat2pmatmul  22594  decpmatmul  22635  cpmadugsumlemB  22737  cpmadugsumlemC  22738  tsmsxplem1  24016  tsmsxplem2  24017  plypf1  26093  taylpfval  26248  lgseisenlem3  27264  lgseisenlem4  27265  gsummpt2d  32962  gsummptres  32965  gsummulgc2  32973  gsumvsca1  33152  gsumvsca2  33153  fldextrspunlsplem  33641  mdetpmtr1  33786  esumpfinval  34038  aacllem  49763
  Copyright terms: Public domain W3C validator