| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dstfrvel | Structured version Visualization version GIF version | ||
| Description: Elementhood of preimage maps produced by the "less than or equal to" relation. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
| Ref | Expression |
|---|---|
| dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orvclteel.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dstfrvel.1 | ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) |
| dstfrvel.2 | ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) |
| Ref | Expression |
|---|---|
| dstfrvel | ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dstfrv.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | dstfrv.2 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 3 | 1, 2 | rrvvf 34478 | . . . . 5 ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
| 4 | dstfrvel.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) | |
| 5 | 3, 4 | ffvelcdmd 7024 | . . . 4 ⊢ (𝜑 → (𝑋‘𝐵) ∈ ℝ) |
| 6 | dstfrvel.2 | . . . 4 ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) | |
| 7 | breq1 5096 | . . . . 5 ⊢ (𝑥 = (𝑋‘𝐵) → (𝑥 ≤ 𝐴 ↔ (𝑋‘𝐵) ≤ 𝐴)) | |
| 8 | 7 | elrab 3643 | . . . 4 ⊢ ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ ((𝑋‘𝐵) ∈ ℝ ∧ (𝑋‘𝐵) ≤ 𝐴)) |
| 9 | 5, 6, 8 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}) |
| 10 | 3 | ffund 6660 | . . . 4 ⊢ (𝜑 → Fun 𝑋) |
| 11 | 1, 2 | rrvdm 34480 | . . . . 5 ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) |
| 12 | 4, 11 | eleqtrrd 2836 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom 𝑋) |
| 13 | fvimacnv 6992 | . . . 4 ⊢ ((Fun 𝑋 ∧ 𝐵 ∈ dom 𝑋) → ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}))) | |
| 14 | 10, 12, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}))) |
| 15 | 9, 14 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴})) |
| 16 | orvclteel.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 17 | 1, 2, 16 | orrvcval4 34499 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) = (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴})) |
| 18 | 15, 17 | eleqtrrd 2836 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 {crab 3396 ∪ cuni 4858 class class class wbr 5093 ◡ccnv 5618 dom cdm 5619 “ cima 5622 Fun wfun 6480 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 ≤ cle 11154 Probcprb 34441 rRndVarcrrv 34474 ∘RV/𝑐corvc 34490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-ioo 13251 df-topgen 17349 df-top 22810 df-bases 22862 df-esum 34062 df-siga 34143 df-sigagen 34173 df-brsiga 34216 df-meas 34230 df-mbfm 34284 df-prob 34442 df-rrv 34475 df-orvc 34491 |
| This theorem is referenced by: dstfrvunirn 34509 |
| Copyright terms: Public domain | W3C validator |