Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dstfrvel | Structured version Visualization version GIF version |
Description: Elementhood of preimage maps produced by the "less than or equal to" relation. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
Ref | Expression |
---|---|
dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orvclteel.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dstfrvel.1 | ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) |
dstfrvel.2 | ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) |
Ref | Expression |
---|---|
dstfrvel | ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstfrv.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | dstfrv.2 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | 1, 2 | rrvvf 32460 | . . . . 5 ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
4 | dstfrvel.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) | |
5 | 3, 4 | ffvelcdmd 6994 | . . . 4 ⊢ (𝜑 → (𝑋‘𝐵) ∈ ℝ) |
6 | dstfrvel.2 | . . . 4 ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) | |
7 | breq1 5084 | . . . . 5 ⊢ (𝑥 = (𝑋‘𝐵) → (𝑥 ≤ 𝐴 ↔ (𝑋‘𝐵) ≤ 𝐴)) | |
8 | 7 | elrab 3629 | . . . 4 ⊢ ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ ((𝑋‘𝐵) ∈ ℝ ∧ (𝑋‘𝐵) ≤ 𝐴)) |
9 | 5, 6, 8 | sylanbrc 584 | . . 3 ⊢ (𝜑 → (𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}) |
10 | 3 | ffund 6634 | . . . 4 ⊢ (𝜑 → Fun 𝑋) |
11 | 1, 2 | rrvdm 32462 | . . . . 5 ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) |
12 | 4, 11 | eleqtrrd 2840 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom 𝑋) |
13 | fvimacnv 6962 | . . . 4 ⊢ ((Fun 𝑋 ∧ 𝐵 ∈ dom 𝑋) → ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}))) | |
14 | 10, 12, 13 | syl2anc 585 | . . 3 ⊢ (𝜑 → ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}))) |
15 | 9, 14 | mpbid 231 | . 2 ⊢ (𝜑 → 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴})) |
16 | orvclteel.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
17 | 1, 2, 16 | orrvcval4 32480 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) = (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴})) |
18 | 15, 17 | eleqtrrd 2840 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2104 {crab 3303 ∪ cuni 4844 class class class wbr 5081 ◡ccnv 5599 dom cdm 5600 “ cima 5603 Fun wfun 6452 ‘cfv 6458 (class class class)co 7307 ℝcr 10920 ≤ cle 11060 Probcprb 32423 rRndVarcrrv 32456 ∘RV/𝑐corvc 32471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-pre-lttri 10995 ax-pre-lttrn 10996 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-ioo 13133 df-topgen 17203 df-top 22092 df-bases 22145 df-esum 32045 df-siga 32126 df-sigagen 32156 df-brsiga 32199 df-meas 32213 df-mbfm 32267 df-prob 32424 df-rrv 32457 df-orvc 32472 |
This theorem is referenced by: dstfrvunirn 32490 |
Copyright terms: Public domain | W3C validator |