Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dstfrvel | Structured version Visualization version GIF version |
Description: Elementhood of preimage maps produced by the "less than or equal to" relation. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
Ref | Expression |
---|---|
dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orvclteel.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dstfrvel.1 | ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) |
dstfrvel.2 | ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) |
Ref | Expression |
---|---|
dstfrvel | ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstfrv.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | dstfrv.2 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | 1, 2 | rrvvf 32420 | . . . . 5 ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
4 | dstfrvel.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) | |
5 | 3, 4 | ffvelrnd 6959 | . . . 4 ⊢ (𝜑 → (𝑋‘𝐵) ∈ ℝ) |
6 | dstfrvel.2 | . . . 4 ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) | |
7 | breq1 5082 | . . . . 5 ⊢ (𝑥 = (𝑋‘𝐵) → (𝑥 ≤ 𝐴 ↔ (𝑋‘𝐵) ≤ 𝐴)) | |
8 | 7 | elrab 3626 | . . . 4 ⊢ ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ ((𝑋‘𝐵) ∈ ℝ ∧ (𝑋‘𝐵) ≤ 𝐴)) |
9 | 5, 6, 8 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}) |
10 | 3 | ffund 6602 | . . . 4 ⊢ (𝜑 → Fun 𝑋) |
11 | 1, 2 | rrvdm 32422 | . . . . 5 ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) |
12 | 4, 11 | eleqtrrd 2844 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom 𝑋) |
13 | fvimacnv 6927 | . . . 4 ⊢ ((Fun 𝑋 ∧ 𝐵 ∈ dom 𝑋) → ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}))) | |
14 | 10, 12, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}))) |
15 | 9, 14 | mpbid 231 | . 2 ⊢ (𝜑 → 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴})) |
16 | orvclteel.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
17 | 1, 2, 16 | orrvcval4 32440 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) = (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴})) |
18 | 15, 17 | eleqtrrd 2844 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2110 {crab 3070 ∪ cuni 4845 class class class wbr 5079 ◡ccnv 5589 dom cdm 5590 “ cima 5593 Fun wfun 6426 ‘cfv 6432 (class class class)co 7272 ℝcr 10881 ≤ cle 11021 Probcprb 32383 rRndVarcrrv 32416 ∘RV/𝑐corvc 32431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-pre-lttri 10956 ax-pre-lttrn 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-1st 7825 df-2nd 7826 df-er 8490 df-map 8609 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-ioo 13094 df-topgen 17165 df-top 22054 df-bases 22107 df-esum 32005 df-siga 32086 df-sigagen 32116 df-brsiga 32159 df-meas 32173 df-mbfm 32227 df-prob 32384 df-rrv 32417 df-orvc 32432 |
This theorem is referenced by: dstfrvunirn 32450 |
Copyright terms: Public domain | W3C validator |