Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dstfrvel Structured version   Visualization version   GIF version

Theorem dstfrvel 34441
Description: Elementhood of preimage maps produced by the "less than or equal to" relation. (Contributed by Thierry Arnoux, 13-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvclteel.1 (𝜑𝐴 ∈ ℝ)
dstfrvel.1 (𝜑𝐵 dom 𝑃)
dstfrvel.2 (𝜑 → (𝑋𝐵) ≤ 𝐴)
Assertion
Ref Expression
dstfrvel (𝜑𝐵 ∈ (𝑋RV/𝑐𝐴))

Proof of Theorem dstfrvel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstfrv.1 . . . . . 6 (𝜑𝑃 ∈ Prob)
2 dstfrv.2 . . . . . 6 (𝜑𝑋 ∈ (rRndVar‘𝑃))
31, 2rrvvf 34411 . . . . 5 (𝜑𝑋: dom 𝑃⟶ℝ)
4 dstfrvel.1 . . . . 5 (𝜑𝐵 dom 𝑃)
53, 4ffvelcdmd 7023 . . . 4 (𝜑 → (𝑋𝐵) ∈ ℝ)
6 dstfrvel.2 . . . 4 (𝜑 → (𝑋𝐵) ≤ 𝐴)
7 breq1 5098 . . . . 5 (𝑥 = (𝑋𝐵) → (𝑥𝐴 ↔ (𝑋𝐵) ≤ 𝐴))
87elrab 3650 . . . 4 ((𝑋𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥𝐴} ↔ ((𝑋𝐵) ∈ ℝ ∧ (𝑋𝐵) ≤ 𝐴))
95, 6, 8sylanbrc 583 . . 3 (𝜑 → (𝑋𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥𝐴})
103ffund 6660 . . . 4 (𝜑 → Fun 𝑋)
111, 2rrvdm 34413 . . . . 5 (𝜑 → dom 𝑋 = dom 𝑃)
124, 11eleqtrrd 2831 . . . 4 (𝜑𝐵 ∈ dom 𝑋)
13 fvimacnv 6991 . . . 4 ((Fun 𝑋𝐵 ∈ dom 𝑋) → ((𝑋𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥𝐴} ↔ 𝐵 ∈ (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴})))
1410, 12, 13syl2anc 584 . . 3 (𝜑 → ((𝑋𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥𝐴} ↔ 𝐵 ∈ (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴})))
159, 14mpbid 232 . 2 (𝜑𝐵 ∈ (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}))
16 orvclteel.1 . . 3 (𝜑𝐴 ∈ ℝ)
171, 2, 16orrvcval4 34432 . 2 (𝜑 → (𝑋RV/𝑐𝐴) = (𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥𝐴}))
1815, 17eleqtrrd 2831 1 (𝜑𝐵 ∈ (𝑋RV/𝑐𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  {crab 3396   cuni 4861   class class class wbr 5095  ccnv 5622  dom cdm 5623  cima 5626  Fun wfun 6480  cfv 6486  (class class class)co 7353  cr 11027  cle 11169  Probcprb 34374  rRndVarcrrv 34407  RV/𝑐corvc 34423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-ioo 13270  df-topgen 17365  df-top 22797  df-bases 22849  df-esum 33994  df-siga 34075  df-sigagen 34105  df-brsiga 34148  df-meas 34162  df-mbfm 34216  df-prob 34375  df-rrv 34408  df-orvc 34424
This theorem is referenced by:  dstfrvunirn  34442
  Copyright terms: Public domain W3C validator