| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dstfrvel | Structured version Visualization version GIF version | ||
| Description: Elementhood of preimage maps produced by the "less than or equal to" relation. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
| Ref | Expression |
|---|---|
| dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
| orvclteel.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dstfrvel.1 | ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) |
| dstfrvel.2 | ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) |
| Ref | Expression |
|---|---|
| dstfrvel | ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dstfrv.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | dstfrv.2 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
| 3 | 1, 2 | rrvvf 34452 | . . . . 5 ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
| 4 | dstfrvel.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) | |
| 5 | 3, 4 | ffvelcdmd 7018 | . . . 4 ⊢ (𝜑 → (𝑋‘𝐵) ∈ ℝ) |
| 6 | dstfrvel.2 | . . . 4 ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) | |
| 7 | breq1 5094 | . . . . 5 ⊢ (𝑥 = (𝑋‘𝐵) → (𝑥 ≤ 𝐴 ↔ (𝑋‘𝐵) ≤ 𝐴)) | |
| 8 | 7 | elrab 3647 | . . . 4 ⊢ ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ ((𝑋‘𝐵) ∈ ℝ ∧ (𝑋‘𝐵) ≤ 𝐴)) |
| 9 | 5, 6, 8 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}) |
| 10 | 3 | ffund 6655 | . . . 4 ⊢ (𝜑 → Fun 𝑋) |
| 11 | 1, 2 | rrvdm 34454 | . . . . 5 ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) |
| 12 | 4, 11 | eleqtrrd 2834 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom 𝑋) |
| 13 | fvimacnv 6986 | . . . 4 ⊢ ((Fun 𝑋 ∧ 𝐵 ∈ dom 𝑋) → ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}))) | |
| 14 | 10, 12, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}))) |
| 15 | 9, 14 | mpbid 232 | . 2 ⊢ (𝜑 → 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴})) |
| 16 | orvclteel.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 17 | 1, 2, 16 | orrvcval4 34473 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) = (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴})) |
| 18 | 15, 17 | eleqtrrd 2834 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 {crab 3395 ∪ cuni 4859 class class class wbr 5091 ◡ccnv 5615 dom cdm 5616 “ cima 5619 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 ≤ cle 11144 Probcprb 34415 rRndVarcrrv 34448 ∘RV/𝑐corvc 34464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-ioo 13246 df-topgen 17344 df-top 22807 df-bases 22859 df-esum 34036 df-siga 34117 df-sigagen 34147 df-brsiga 34190 df-meas 34204 df-mbfm 34258 df-prob 34416 df-rrv 34449 df-orvc 34465 |
| This theorem is referenced by: dstfrvunirn 34483 |
| Copyright terms: Public domain | W3C validator |