Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dstfrvel | Structured version Visualization version GIF version |
Description: Elementhood of preimage maps produced by the "less than or equal to" relation. (Contributed by Thierry Arnoux, 13-Feb-2017.) |
Ref | Expression |
---|---|
dstfrv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
dstfrv.2 | ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) |
orvclteel.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dstfrvel.1 | ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) |
dstfrvel.2 | ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) |
Ref | Expression |
---|---|
dstfrvel | ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dstfrv.1 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | dstfrv.2 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (rRndVar‘𝑃)) | |
3 | 1, 2 | rrvvf 32390 | . . . . 5 ⊢ (𝜑 → 𝑋:∪ dom 𝑃⟶ℝ) |
4 | dstfrvel.1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ∪ dom 𝑃) | |
5 | 3, 4 | ffvelrnd 6956 | . . . 4 ⊢ (𝜑 → (𝑋‘𝐵) ∈ ℝ) |
6 | dstfrvel.2 | . . . 4 ⊢ (𝜑 → (𝑋‘𝐵) ≤ 𝐴) | |
7 | breq1 5081 | . . . . 5 ⊢ (𝑥 = (𝑋‘𝐵) → (𝑥 ≤ 𝐴 ↔ (𝑋‘𝐵) ≤ 𝐴)) | |
8 | 7 | elrab 3625 | . . . 4 ⊢ ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ ((𝑋‘𝐵) ∈ ℝ ∧ (𝑋‘𝐵) ≤ 𝐴)) |
9 | 5, 6, 8 | sylanbrc 582 | . . 3 ⊢ (𝜑 → (𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}) |
10 | 3 | ffund 6600 | . . . 4 ⊢ (𝜑 → Fun 𝑋) |
11 | 1, 2 | rrvdm 32392 | . . . . 5 ⊢ (𝜑 → dom 𝑋 = ∪ dom 𝑃) |
12 | 4, 11 | eleqtrrd 2843 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom 𝑋) |
13 | fvimacnv 6924 | . . . 4 ⊢ ((Fun 𝑋 ∧ 𝐵 ∈ dom 𝑋) → ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}))) | |
14 | 10, 12, 13 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝑋‘𝐵) ∈ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴} ↔ 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴}))) |
15 | 9, 14 | mpbid 231 | . 2 ⊢ (𝜑 → 𝐵 ∈ (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴})) |
16 | orvclteel.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
17 | 1, 2, 16 | orrvcval4 32410 | . 2 ⊢ (𝜑 → (𝑋∘RV/𝑐 ≤ 𝐴) = (◡𝑋 “ {𝑥 ∈ ℝ ∣ 𝑥 ≤ 𝐴})) |
18 | 15, 17 | eleqtrrd 2843 | 1 ⊢ (𝜑 → 𝐵 ∈ (𝑋∘RV/𝑐 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2109 {crab 3069 ∪ cuni 4844 class class class wbr 5078 ◡ccnv 5587 dom cdm 5588 “ cima 5591 Fun wfun 6424 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 ≤ cle 10994 Probcprb 32353 rRndVarcrrv 32386 ∘RV/𝑐corvc 32401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-ioo 13065 df-topgen 17135 df-top 22024 df-bases 22077 df-esum 31975 df-siga 32056 df-sigagen 32086 df-brsiga 32129 df-meas 32143 df-mbfm 32197 df-prob 32354 df-rrv 32387 df-orvc 32402 |
This theorem is referenced by: dstfrvunirn 32420 |
Copyright terms: Public domain | W3C validator |