Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvvolioof Structured version   Visualization version   GIF version

Theorem fvvolioof 43918
Description: The function value of the Lebesgue measure of an open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fvvolioof.f (𝜑𝐹:𝐴⟶(ℝ* × ℝ*))
fvvolioof.x (𝜑𝑋𝐴)
Assertion
Ref Expression
fvvolioof (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹𝑋))(,)(2nd ‘(𝐹𝑋)))))

Proof of Theorem fvvolioof
StepHypRef Expression
1 fvvolioof.f . . . 4 (𝜑𝐹:𝐴⟶(ℝ* × ℝ*))
21ffund 6659 . . 3 (𝜑 → Fun 𝐹)
3 fvvolioof.x . . . 4 (𝜑𝑋𝐴)
41fdmd 6666 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
54eqcomd 2743 . . . 4 (𝜑𝐴 = dom 𝐹)
63, 5eleqtrd 2840 . . 3 (𝜑𝑋 ∈ dom 𝐹)
7 fvco 6926 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = ((vol ∘ (,))‘(𝐹𝑋)))
82, 6, 7syl2anc 585 . 2 (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = ((vol ∘ (,))‘(𝐹𝑋)))
9 ioof 13284 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
10 ffun 6658 . . . . 5 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
119, 10ax-mp 5 . . . 4 Fun (,)
1211a1i 11 . . 3 (𝜑 → Fun (,))
131, 3ffvelcdmd 7022 . . . 4 (𝜑 → (𝐹𝑋) ∈ (ℝ* × ℝ*))
149fdmi 6667 . . . 4 dom (,) = (ℝ* × ℝ*)
1513, 14eleqtrrdi 2849 . . 3 (𝜑 → (𝐹𝑋) ∈ dom (,))
16 fvco 6926 . . 3 ((Fun (,) ∧ (𝐹𝑋) ∈ dom (,)) → ((vol ∘ (,))‘(𝐹𝑋)) = (vol‘((,)‘(𝐹𝑋))))
1712, 15, 16syl2anc 585 . 2 (𝜑 → ((vol ∘ (,))‘(𝐹𝑋)) = (vol‘((,)‘(𝐹𝑋))))
18 df-ov 7344 . . . . 5 ((1st ‘(𝐹𝑋))(,)(2nd ‘(𝐹𝑋))) = ((,)‘⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩)
1918a1i 11 . . . 4 (𝜑 → ((1st ‘(𝐹𝑋))(,)(2nd ‘(𝐹𝑋))) = ((,)‘⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩))
20 1st2nd2 7942 . . . . . . 7 ((𝐹𝑋) ∈ (ℝ* × ℝ*) → (𝐹𝑋) = ⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩)
2113, 20syl 17 . . . . . 6 (𝜑 → (𝐹𝑋) = ⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩)
2221eqcomd 2743 . . . . 5 (𝜑 → ⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩ = (𝐹𝑋))
2322fveq2d 6833 . . . 4 (𝜑 → ((,)‘⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩) = ((,)‘(𝐹𝑋)))
2419, 23eqtr2d 2778 . . 3 (𝜑 → ((,)‘(𝐹𝑋)) = ((1st ‘(𝐹𝑋))(,)(2nd ‘(𝐹𝑋))))
2524fveq2d 6833 . 2 (𝜑 → (vol‘((,)‘(𝐹𝑋))) = (vol‘((1st ‘(𝐹𝑋))(,)(2nd ‘(𝐹𝑋)))))
268, 17, 253eqtrd 2781 1 (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹𝑋))(,)(2nd ‘(𝐹𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  𝒫 cpw 4551  cop 4583   × cxp 5622  dom cdm 5624  ccom 5628  Fun wfun 6477  wf 6479  cfv 6483  (class class class)co 7341  1st c1st 7901  2nd c2nd 7902  cr 10975  *cxr 11113  (,)cioo 13184  volcvol 24732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-pre-lttri 11050  ax-pre-lttrn 11051
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-po 5536  df-so 5537  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7903  df-2nd 7904  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-ioo 13188
This theorem is referenced by:  volioofmpt  43923  voliooicof  43925
  Copyright terms: Public domain W3C validator