![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvvolioof | Structured version Visualization version GIF version |
Description: The function value of the Lebesgue measure of an open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
fvvolioof.f | ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
fvvolioof.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
fvvolioof | ⊢ (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvvolioof.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) | |
2 | 1 | ffund 6741 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
3 | fvvolioof.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
4 | 1 | fdmd 6747 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
5 | 4 | eqcomd 2741 | . . . 4 ⊢ (𝜑 → 𝐴 = dom 𝐹) |
6 | 3, 5 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) |
7 | fvco 7007 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = ((vol ∘ (,))‘(𝐹‘𝑋))) | |
8 | 2, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = ((vol ∘ (,))‘(𝐹‘𝑋))) |
9 | ioof 13484 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
10 | ffun 6740 | . . . . 5 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,)) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ Fun (,) |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → Fun (,)) |
13 | 1, 3 | ffvelcdmd 7105 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (ℝ* × ℝ*)) |
14 | 9 | fdmi 6748 | . . . 4 ⊢ dom (,) = (ℝ* × ℝ*) |
15 | 13, 14 | eleqtrrdi 2850 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ dom (,)) |
16 | fvco 7007 | . . 3 ⊢ ((Fun (,) ∧ (𝐹‘𝑋) ∈ dom (,)) → ((vol ∘ (,))‘(𝐹‘𝑋)) = (vol‘((,)‘(𝐹‘𝑋)))) | |
17 | 12, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ((vol ∘ (,))‘(𝐹‘𝑋)) = (vol‘((,)‘(𝐹‘𝑋)))) |
18 | df-ov 7434 | . . . . 5 ⊢ ((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))) = ((,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) | |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))) = ((,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉)) |
20 | 1st2nd2 8052 | . . . . . . 7 ⊢ ((𝐹‘𝑋) ∈ (ℝ* × ℝ*) → (𝐹‘𝑋) = 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) | |
21 | 13, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑋) = 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) |
22 | 21 | eqcomd 2741 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉 = (𝐹‘𝑋)) |
23 | 22 | fveq2d 6911 | . . . 4 ⊢ (𝜑 → ((,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) = ((,)‘(𝐹‘𝑋))) |
24 | 19, 23 | eqtr2d 2776 | . . 3 ⊢ (𝜑 → ((,)‘(𝐹‘𝑋)) = ((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋)))) |
25 | 24 | fveq2d 6911 | . 2 ⊢ (𝜑 → (vol‘((,)‘(𝐹‘𝑋))) = (vol‘((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))))) |
26 | 8, 17, 25 | 3eqtrd 2779 | 1 ⊢ (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 𝒫 cpw 4605 〈cop 4637 × cxp 5687 dom cdm 5689 ∘ ccom 5693 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 1st c1st 8011 2nd c2nd 8012 ℝcr 11152 ℝ*cxr 11292 (,)cioo 13384 volcvol 25512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-ioo 13388 |
This theorem is referenced by: volioofmpt 45950 voliooicof 45952 |
Copyright terms: Public domain | W3C validator |