| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvvolioof | Structured version Visualization version GIF version | ||
| Description: The function value of the Lebesgue measure of an open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| fvvolioof.f | ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
| fvvolioof.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fvvolioof | ⊢ (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvvolioof.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) | |
| 2 | 1 | ffund 6692 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 3 | fvvolioof.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 4 | 1 | fdmd 6698 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 5 | 4 | eqcomd 2735 | . . . 4 ⊢ (𝜑 → 𝐴 = dom 𝐹) |
| 6 | 3, 5 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) |
| 7 | fvco 6959 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = ((vol ∘ (,))‘(𝐹‘𝑋))) | |
| 8 | 2, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = ((vol ∘ (,))‘(𝐹‘𝑋))) |
| 9 | ioof 13408 | . . . . 5 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ | |
| 10 | ffun 6691 | . . . . 5 ⊢ ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,)) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ Fun (,) |
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → Fun (,)) |
| 13 | 1, 3 | ffvelcdmd 7057 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (ℝ* × ℝ*)) |
| 14 | 9 | fdmi 6699 | . . . 4 ⊢ dom (,) = (ℝ* × ℝ*) |
| 15 | 13, 14 | eleqtrrdi 2839 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ dom (,)) |
| 16 | fvco 6959 | . . 3 ⊢ ((Fun (,) ∧ (𝐹‘𝑋) ∈ dom (,)) → ((vol ∘ (,))‘(𝐹‘𝑋)) = (vol‘((,)‘(𝐹‘𝑋)))) | |
| 17 | 12, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ((vol ∘ (,))‘(𝐹‘𝑋)) = (vol‘((,)‘(𝐹‘𝑋)))) |
| 18 | df-ov 7390 | . . . . 5 ⊢ ((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))) = ((,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) | |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))) = ((,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉)) |
| 20 | 1st2nd2 8007 | . . . . . . 7 ⊢ ((𝐹‘𝑋) ∈ (ℝ* × ℝ*) → (𝐹‘𝑋) = 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) | |
| 21 | 13, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑋) = 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) |
| 22 | 21 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉 = (𝐹‘𝑋)) |
| 23 | 22 | fveq2d 6862 | . . . 4 ⊢ (𝜑 → ((,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) = ((,)‘(𝐹‘𝑋))) |
| 24 | 19, 23 | eqtr2d 2765 | . . 3 ⊢ (𝜑 → ((,)‘(𝐹‘𝑋)) = ((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋)))) |
| 25 | 24 | fveq2d 6862 | . 2 ⊢ (𝜑 → (vol‘((,)‘(𝐹‘𝑋))) = (vol‘((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))))) |
| 26 | 8, 17, 25 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (((vol ∘ (,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))(,)(2nd ‘(𝐹‘𝑋))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 𝒫 cpw 4563 〈cop 4595 × cxp 5636 dom cdm 5638 ∘ ccom 5642 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 ℝcr 11067 ℝ*cxr 11207 (,)cioo 13306 volcvol 25364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 |
| This theorem is referenced by: volioofmpt 45992 voliooicof 45994 |
| Copyright terms: Public domain | W3C validator |