Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvvolioof Structured version   Visualization version   GIF version

Theorem fvvolioof 45424
Description: The function value of the Lebesgue measure of an open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fvvolioof.f (πœ‘ β†’ 𝐹:𝐴⟢(ℝ* Γ— ℝ*))
fvvolioof.x (πœ‘ β†’ 𝑋 ∈ 𝐴)
Assertion
Ref Expression
fvvolioof (πœ‘ β†’ (((vol ∘ (,)) ∘ 𝐹)β€˜π‘‹) = (volβ€˜((1st β€˜(πΉβ€˜π‘‹))(,)(2nd β€˜(πΉβ€˜π‘‹)))))

Proof of Theorem fvvolioof
StepHypRef Expression
1 fvvolioof.f . . . 4 (πœ‘ β†’ 𝐹:𝐴⟢(ℝ* Γ— ℝ*))
21ffund 6731 . . 3 (πœ‘ β†’ Fun 𝐹)
3 fvvolioof.x . . . 4 (πœ‘ β†’ 𝑋 ∈ 𝐴)
41fdmd 6738 . . . . 5 (πœ‘ β†’ dom 𝐹 = 𝐴)
54eqcomd 2734 . . . 4 (πœ‘ β†’ 𝐴 = dom 𝐹)
63, 5eleqtrd 2831 . . 3 (πœ‘ β†’ 𝑋 ∈ dom 𝐹)
7 fvco 7001 . . 3 ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) β†’ (((vol ∘ (,)) ∘ 𝐹)β€˜π‘‹) = ((vol ∘ (,))β€˜(πΉβ€˜π‘‹)))
82, 6, 7syl2anc 582 . 2 (πœ‘ β†’ (((vol ∘ (,)) ∘ 𝐹)β€˜π‘‹) = ((vol ∘ (,))β€˜(πΉβ€˜π‘‹)))
9 ioof 13466 . . . . 5 (,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ
10 ffun 6730 . . . . 5 ((,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ β†’ Fun (,))
119, 10ax-mp 5 . . . 4 Fun (,)
1211a1i 11 . . 3 (πœ‘ β†’ Fun (,))
131, 3ffvelcdmd 7100 . . . 4 (πœ‘ β†’ (πΉβ€˜π‘‹) ∈ (ℝ* Γ— ℝ*))
149fdmi 6739 . . . 4 dom (,) = (ℝ* Γ— ℝ*)
1513, 14eleqtrrdi 2840 . . 3 (πœ‘ β†’ (πΉβ€˜π‘‹) ∈ dom (,))
16 fvco 7001 . . 3 ((Fun (,) ∧ (πΉβ€˜π‘‹) ∈ dom (,)) β†’ ((vol ∘ (,))β€˜(πΉβ€˜π‘‹)) = (volβ€˜((,)β€˜(πΉβ€˜π‘‹))))
1712, 15, 16syl2anc 582 . 2 (πœ‘ β†’ ((vol ∘ (,))β€˜(πΉβ€˜π‘‹)) = (volβ€˜((,)β€˜(πΉβ€˜π‘‹))))
18 df-ov 7429 . . . . 5 ((1st β€˜(πΉβ€˜π‘‹))(,)(2nd β€˜(πΉβ€˜π‘‹))) = ((,)β€˜βŸ¨(1st β€˜(πΉβ€˜π‘‹)), (2nd β€˜(πΉβ€˜π‘‹))⟩)
1918a1i 11 . . . 4 (πœ‘ β†’ ((1st β€˜(πΉβ€˜π‘‹))(,)(2nd β€˜(πΉβ€˜π‘‹))) = ((,)β€˜βŸ¨(1st β€˜(πΉβ€˜π‘‹)), (2nd β€˜(πΉβ€˜π‘‹))⟩))
20 1st2nd2 8040 . . . . . . 7 ((πΉβ€˜π‘‹) ∈ (ℝ* Γ— ℝ*) β†’ (πΉβ€˜π‘‹) = ⟨(1st β€˜(πΉβ€˜π‘‹)), (2nd β€˜(πΉβ€˜π‘‹))⟩)
2113, 20syl 17 . . . . . 6 (πœ‘ β†’ (πΉβ€˜π‘‹) = ⟨(1st β€˜(πΉβ€˜π‘‹)), (2nd β€˜(πΉβ€˜π‘‹))⟩)
2221eqcomd 2734 . . . . 5 (πœ‘ β†’ ⟨(1st β€˜(πΉβ€˜π‘‹)), (2nd β€˜(πΉβ€˜π‘‹))⟩ = (πΉβ€˜π‘‹))
2322fveq2d 6906 . . . 4 (πœ‘ β†’ ((,)β€˜βŸ¨(1st β€˜(πΉβ€˜π‘‹)), (2nd β€˜(πΉβ€˜π‘‹))⟩) = ((,)β€˜(πΉβ€˜π‘‹)))
2419, 23eqtr2d 2769 . . 3 (πœ‘ β†’ ((,)β€˜(πΉβ€˜π‘‹)) = ((1st β€˜(πΉβ€˜π‘‹))(,)(2nd β€˜(πΉβ€˜π‘‹))))
2524fveq2d 6906 . 2 (πœ‘ β†’ (volβ€˜((,)β€˜(πΉβ€˜π‘‹))) = (volβ€˜((1st β€˜(πΉβ€˜π‘‹))(,)(2nd β€˜(πΉβ€˜π‘‹)))))
268, 17, 253eqtrd 2772 1 (πœ‘ β†’ (((vol ∘ (,)) ∘ 𝐹)β€˜π‘‹) = (volβ€˜((1st β€˜(πΉβ€˜π‘‹))(,)(2nd β€˜(πΉβ€˜π‘‹)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  π’« cpw 4606  βŸ¨cop 4638   Γ— cxp 5680  dom cdm 5682   ∘ ccom 5686  Fun wfun 6547  βŸΆwf 6549  β€˜cfv 6553  (class class class)co 7426  1st c1st 7999  2nd c2nd 8000  β„cr 11147  β„*cxr 11287  (,)cioo 13366  volcvol 25420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-pre-lttri 11222  ax-pre-lttrn 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-ioo 13370
This theorem is referenced by:  volioofmpt  45429  voliooicof  45431
  Copyright terms: Public domain W3C validator