MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcd0val Structured version   Visualization version   GIF version

Theorem gcd0val 16418
Description: The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0val (0 gcd 0) = 0

Proof of Theorem gcd0val
StepHypRef Expression
1 0z 12489 . . 3 0 ∈ ℤ
2 gcdval 16417 . . 3 ((0 ∈ ℤ ∧ 0 ∈ ℤ) → (0 gcd 0) = if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < )))
31, 1, 2mp2an 692 . 2 (0 gcd 0) = if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < ))
4 eqid 2733 . . 3 0 = 0
5 iftrue 4482 . . 3 ((0 = 0 ∧ 0 = 0) → if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < )) = 0)
64, 4, 5mp2an 692 . 2 if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < )) = 0
73, 6eqtri 2756 1 (0 gcd 0) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  {crab 3397  ifcif 4476   class class class wbr 5095  (class class class)co 7355  supcsup 9334  cr 11015  0cc0 11016   < clt 11156  cz 12478  cdvds 16173   gcd cgcd 16415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-i2m1 11084  ax-rnegex 11087  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-pnf 11158  df-mnf 11159  df-ltxr 11161  df-neg 11357  df-z 12479  df-gcd 16416
This theorem is referenced by:  gcddvds  16424  gcdcl  16427  gcdeq0  16438  gcd0id  16440  bezout  16464  mulgcd  16469  nn0rppwr  16482  nn0expgcd  16485  nn0gcdsq  16673
  Copyright terms: Public domain W3C validator