MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcd0val Structured version   Visualization version   GIF version

Theorem gcd0val 16442
Description: The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0val (0 gcd 0) = 0

Proof of Theorem gcd0val
StepHypRef Expression
1 0z 12570 . . 3 0 ∈ ℤ
2 gcdval 16441 . . 3 ((0 ∈ ℤ ∧ 0 ∈ ℤ) → (0 gcd 0) = if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < )))
31, 1, 2mp2an 689 . 2 (0 gcd 0) = if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < ))
4 eqid 2726 . . 3 0 = 0
5 iftrue 4529 . . 3 ((0 = 0 ∧ 0 = 0) → if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < )) = 0)
64, 4, 5mp2an 689 . 2 if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < )) = 0
73, 6eqtri 2754 1 (0 gcd 0) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098  {crab 3426  ifcif 4523   class class class wbr 5141  (class class class)co 7404  supcsup 9434  cr 11108  0cc0 11109   < clt 11249  cz 12559  cdvds 16201   gcd cgcd 16439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-i2m1 11177  ax-rnegex 11180  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11251  df-mnf 11252  df-ltxr 11254  df-neg 11448  df-z 12560  df-gcd 16440
This theorem is referenced by:  gcddvds  16448  gcdcl  16451  gcdeq0  16462  gcd0id  16464  bezout  16489  mulgcd  16494  nn0gcdsq  16694  nn0rppwr  41771  nn0expgcd  41773
  Copyright terms: Public domain W3C validator