Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcd0val Structured version   Visualization version   GIF version

Theorem gcd0val 15840
 Description: The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0val (0 gcd 0) = 0

Proof of Theorem gcd0val
StepHypRef Expression
1 0z 11986 . . 3 0 ∈ ℤ
2 gcdval 15839 . . 3 ((0 ∈ ℤ ∧ 0 ∈ ℤ) → (0 gcd 0) = if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < )))
31, 1, 2mp2an 690 . 2 (0 gcd 0) = if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < ))
4 eqid 2821 . . 3 0 = 0
5 iftrue 4473 . . 3 ((0 = 0 ∧ 0 = 0) → if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < )) = 0)
64, 4, 5mp2an 690 . 2 if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < )) = 0
73, 6eqtri 2844 1 (0 gcd 0) = 0
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 398   = wceq 1533   ∈ wcel 2110  {crab 3142  ifcif 4467   class class class wbr 5059  (class class class)co 7150  supcsup 8898  ℝcr 10530  0cc0 10531   < clt 10669  ℤcz 11975   ∥ cdvds 15601   gcd cgcd 15837 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-i2m1 10599  ax-rnegex 10602  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-pnf 10671  df-mnf 10672  df-ltxr 10674  df-neg 10867  df-z 11976  df-gcd 15838 This theorem is referenced by:  gcddvds  15846  gcdcl  15849  gcdeq0  15859  gcd0id  15861  bezout  15885  mulgcd  15890  nn0gcdsq  16086  nn0rppwr  39175  nn0expgcd  39177
 Copyright terms: Public domain W3C validator