MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcd0val Structured version   Visualization version   GIF version

Theorem gcd0val 16531
Description: The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
gcd0val (0 gcd 0) = 0

Proof of Theorem gcd0val
StepHypRef Expression
1 0z 12622 . . 3 0 ∈ ℤ
2 gcdval 16530 . . 3 ((0 ∈ ℤ ∧ 0 ∈ ℤ) → (0 gcd 0) = if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < )))
31, 1, 2mp2an 692 . 2 (0 gcd 0) = if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < ))
4 eqid 2735 . . 3 0 = 0
5 iftrue 4537 . . 3 ((0 = 0 ∧ 0 = 0) → if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < )) = 0)
64, 4, 5mp2an 692 . 2 if((0 = 0 ∧ 0 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 0 ∧ 𝑛 ∥ 0)}, ℝ, < )) = 0
73, 6eqtri 2763 1 (0 gcd 0) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  {crab 3433  ifcif 4531   class class class wbr 5148  (class class class)co 7431  supcsup 9478  cr 11152  0cc0 11153   < clt 11293  cz 12611  cdvds 16287   gcd cgcd 16528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-i2m1 11221  ax-rnegex 11224  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-neg 11493  df-z 12612  df-gcd 16529
This theorem is referenced by:  gcddvds  16537  gcdcl  16540  gcdeq0  16551  gcd0id  16553  bezout  16577  mulgcd  16582  nn0rppwr  16595  nn0expgcd  16598  nn0gcdsq  16786
  Copyright terms: Public domain W3C validator