| Step | Hyp | Ref
| Expression |
| 1 | | nmoco.1 |
. 2
⊢ 𝑁 = (𝑆 normOp 𝑈) |
| 2 | | eqid 2737 |
. 2
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 3 | | eqid 2737 |
. 2
⊢
(norm‘𝑆) =
(norm‘𝑆) |
| 4 | | eqid 2737 |
. 2
⊢
(norm‘𝑈) =
(norm‘𝑈) |
| 5 | | eqid 2737 |
. 2
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 6 | | nghmrcl1 24753 |
. . 3
⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp) |
| 7 | 6 | adantl 481 |
. 2
⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑆 ∈ NrmGrp) |
| 8 | | nghmrcl2 24754 |
. . 3
⊢ (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝑈 ∈ NrmGrp) |
| 9 | 8 | adantr 480 |
. 2
⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑈 ∈ NrmGrp) |
| 10 | | nghmghm 24755 |
. . 3
⊢ (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈)) |
| 11 | | nghmghm 24755 |
. . 3
⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) |
| 12 | | ghmco 19254 |
. . 3
⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
| 13 | 10, 11, 12 | syl2an 596 |
. 2
⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
| 14 | | nmoco.2 |
. . . 4
⊢ 𝐿 = (𝑇 normOp 𝑈) |
| 15 | 14 | nghmcl 24748 |
. . 3
⊢ (𝐹 ∈ (𝑇 NGHom 𝑈) → (𝐿‘𝐹) ∈ ℝ) |
| 16 | | nmoco.3 |
. . . 4
⊢ 𝑀 = (𝑆 normOp 𝑇) |
| 17 | 16 | nghmcl 24748 |
. . 3
⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → (𝑀‘𝐺) ∈ ℝ) |
| 18 | | remulcl 11240 |
. . 3
⊢ (((𝐿‘𝐹) ∈ ℝ ∧ (𝑀‘𝐺) ∈ ℝ) → ((𝐿‘𝐹) · (𝑀‘𝐺)) ∈ ℝ) |
| 19 | 15, 17, 18 | syl2an 596 |
. 2
⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝐿‘𝐹) · (𝑀‘𝐺)) ∈ ℝ) |
| 20 | | nghmrcl1 24753 |
. . . . 5
⊢ (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝑇 ∈ NrmGrp) |
| 21 | 14 | nmoge0 24742 |
. . . . 5
⊢ ((𝑇 ∈ NrmGrp ∧ 𝑈 ∈ NrmGrp ∧ 𝐹 ∈ (𝑇 GrpHom 𝑈)) → 0 ≤ (𝐿‘𝐹)) |
| 22 | 20, 8, 10, 21 | syl3anc 1373 |
. . . 4
⊢ (𝐹 ∈ (𝑇 NGHom 𝑈) → 0 ≤ (𝐿‘𝐹)) |
| 23 | 15, 22 | jca 511 |
. . 3
⊢ (𝐹 ∈ (𝑇 NGHom 𝑈) → ((𝐿‘𝐹) ∈ ℝ ∧ 0 ≤ (𝐿‘𝐹))) |
| 24 | | nghmrcl2 24754 |
. . . . 5
⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp) |
| 25 | 16 | nmoge0 24742 |
. . . . 5
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑀‘𝐺)) |
| 26 | 6, 24, 11, 25 | syl3anc 1373 |
. . . 4
⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → 0 ≤ (𝑀‘𝐺)) |
| 27 | 17, 26 | jca 511 |
. . 3
⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → ((𝑀‘𝐺) ∈ ℝ ∧ 0 ≤ (𝑀‘𝐺))) |
| 28 | | mulge0 11781 |
. . 3
⊢ ((((𝐿‘𝐹) ∈ ℝ ∧ 0 ≤ (𝐿‘𝐹)) ∧ ((𝑀‘𝐺) ∈ ℝ ∧ 0 ≤ (𝑀‘𝐺))) → 0 ≤ ((𝐿‘𝐹) · (𝑀‘𝐺))) |
| 29 | 23, 27, 28 | syl2an 596 |
. 2
⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ ((𝐿‘𝐹) · (𝑀‘𝐺))) |
| 30 | 8 | ad2antrr 726 |
. . . . 5
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝑈 ∈ NrmGrp) |
| 31 | 10 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐹 ∈ (𝑇 GrpHom 𝑈)) |
| 32 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 33 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 34 | 32, 33 | ghmf 19238 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑇 GrpHom 𝑈) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈)) |
| 35 | 31, 34 | syl 17 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈)) |
| 36 | 11 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) |
| 37 | 2, 32 | ghmf 19238 |
. . . . . . . 8
⊢ (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) |
| 38 | 36, 37 | syl 17 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) |
| 39 | | simprl 771 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝑥 ∈ (Base‘𝑆)) |
| 40 | 38, 39 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (𝐺‘𝑥) ∈ (Base‘𝑇)) |
| 41 | 35, 40 | ffvelcdmd 7105 |
. . . . 5
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (𝐹‘(𝐺‘𝑥)) ∈ (Base‘𝑈)) |
| 42 | 33, 4 | nmcl 24629 |
. . . . 5
⊢ ((𝑈 ∈ NrmGrp ∧ (𝐹‘(𝐺‘𝑥)) ∈ (Base‘𝑈)) → ((norm‘𝑈)‘(𝐹‘(𝐺‘𝑥))) ∈ ℝ) |
| 43 | 30, 41, 42 | syl2anc 584 |
. . . 4
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺‘𝑥))) ∈ ℝ) |
| 44 | 15 | ad2antrr 726 |
. . . . 5
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (𝐿‘𝐹) ∈ ℝ) |
| 45 | 20 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝑇 ∈ NrmGrp) |
| 46 | | eqid 2737 |
. . . . . . 7
⊢
(norm‘𝑇) =
(norm‘𝑇) |
| 47 | 32, 46 | nmcl 24629 |
. . . . . 6
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐺‘𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐺‘𝑥)) ∈ ℝ) |
| 48 | 45, 40, 47 | syl2anc 584 |
. . . . 5
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘(𝐺‘𝑥)) ∈ ℝ) |
| 49 | 44, 48 | remulcld 11291 |
. . . 4
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝐿‘𝐹) · ((norm‘𝑇)‘(𝐺‘𝑥))) ∈ ℝ) |
| 50 | 17 | ad2antlr 727 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (𝑀‘𝐺) ∈ ℝ) |
| 51 | 2, 3 | nmcl 24629 |
. . . . . . . 8
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
| 52 | 6, 51 | sylan 580 |
. . . . . . 7
⊢ ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
| 53 | 52 | ad2ant2lr 748 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
| 54 | 50, 53 | remulcld 11291 |
. . . . 5
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝑀‘𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ) |
| 55 | 44, 54 | remulcld 11291 |
. . . 4
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝐿‘𝐹) · ((𝑀‘𝐺) · ((norm‘𝑆)‘𝑥))) ∈ ℝ) |
| 56 | | simpll 767 |
. . . . 5
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → 𝐹 ∈ (𝑇 NGHom 𝑈)) |
| 57 | 14, 32, 46, 4 | nmoi 24749 |
. . . . 5
⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ (𝐺‘𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑈)‘(𝐹‘(𝐺‘𝑥))) ≤ ((𝐿‘𝐹) · ((norm‘𝑇)‘(𝐺‘𝑥)))) |
| 58 | 56, 40, 57 | syl2anc 584 |
. . . 4
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺‘𝑥))) ≤ ((𝐿‘𝐹) · ((norm‘𝑇)‘(𝐺‘𝑥)))) |
| 59 | 23 | ad2antrr 726 |
. . . . 5
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝐿‘𝐹) ∈ ℝ ∧ 0 ≤ (𝐿‘𝐹))) |
| 60 | 16, 2, 3, 46 | nmoi 24749 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐺‘𝑥)) ≤ ((𝑀‘𝐺) · ((norm‘𝑆)‘𝑥))) |
| 61 | 60 | ad2ant2lr 748 |
. . . . 5
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘(𝐺‘𝑥)) ≤ ((𝑀‘𝐺) · ((norm‘𝑆)‘𝑥))) |
| 62 | | lemul2a 12122 |
. . . . 5
⊢
(((((norm‘𝑇)‘(𝐺‘𝑥)) ∈ ℝ ∧ ((𝑀‘𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ ∧ ((𝐿‘𝐹) ∈ ℝ ∧ 0 ≤ (𝐿‘𝐹))) ∧ ((norm‘𝑇)‘(𝐺‘𝑥)) ≤ ((𝑀‘𝐺) · ((norm‘𝑆)‘𝑥))) → ((𝐿‘𝐹) · ((norm‘𝑇)‘(𝐺‘𝑥))) ≤ ((𝐿‘𝐹) · ((𝑀‘𝐺) · ((norm‘𝑆)‘𝑥)))) |
| 63 | 48, 54, 59, 61, 62 | syl31anc 1375 |
. . . 4
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝐿‘𝐹) · ((norm‘𝑇)‘(𝐺‘𝑥))) ≤ ((𝐿‘𝐹) · ((𝑀‘𝐺) · ((norm‘𝑆)‘𝑥)))) |
| 64 | 43, 49, 55, 58, 63 | letrd 11418 |
. . 3
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺‘𝑥))) ≤ ((𝐿‘𝐹) · ((𝑀‘𝐺) · ((norm‘𝑆)‘𝑥)))) |
| 65 | | fvco3 7008 |
. . . . 5
⊢ ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
| 66 | 38, 39, 65 | syl2anc 584 |
. . . 4
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
| 67 | 66 | fveq2d 6910 |
. . 3
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑈)‘((𝐹 ∘ 𝐺)‘𝑥)) = ((norm‘𝑈)‘(𝐹‘(𝐺‘𝑥)))) |
| 68 | 44 | recnd 11289 |
. . . 4
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (𝐿‘𝐹) ∈ ℂ) |
| 69 | 50 | recnd 11289 |
. . . 4
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (𝑀‘𝐺) ∈ ℂ) |
| 70 | 53 | recnd 11289 |
. . . 4
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ) |
| 71 | 68, 69, 70 | mulassd 11284 |
. . 3
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → (((𝐿‘𝐹) · (𝑀‘𝐺)) · ((norm‘𝑆)‘𝑥)) = ((𝐿‘𝐹) · ((𝑀‘𝐺) · ((norm‘𝑆)‘𝑥)))) |
| 72 | 64, 67, 71 | 3brtr4d 5175 |
. 2
⊢ (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑈)‘((𝐹 ∘ 𝐺)‘𝑥)) ≤ (((𝐿‘𝐹) · (𝑀‘𝐺)) · ((norm‘𝑆)‘𝑥))) |
| 73 | 1, 2, 3, 4, 5, 7, 9, 13, 19, 29, 72 | nmolb2d 24739 |
1
⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹 ∘ 𝐺)) ≤ ((𝐿‘𝐹) · (𝑀‘𝐺))) |