MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoco Structured version   Visualization version   GIF version

Theorem nmoco 23664
Description: An upper bound on the operator norm of a composition. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmoco.1 𝑁 = (𝑆 normOp 𝑈)
nmoco.2 𝐿 = (𝑇 normOp 𝑈)
nmoco.3 𝑀 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
nmoco ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹𝐺)) ≤ ((𝐿𝐹) · (𝑀𝐺)))

Proof of Theorem nmoco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoco.1 . 2 𝑁 = (𝑆 normOp 𝑈)
2 eqid 2739 . 2 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2739 . 2 (norm‘𝑆) = (norm‘𝑆)
4 eqid 2739 . 2 (norm‘𝑈) = (norm‘𝑈)
5 eqid 2739 . 2 (0g𝑆) = (0g𝑆)
6 nghmrcl1 23659 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
76adantl 485 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑆 ∈ NrmGrp)
8 nghmrcl2 23660 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝑈 ∈ NrmGrp)
98adantr 484 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑈 ∈ NrmGrp)
10 nghmghm 23661 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈))
11 nghmghm 23661 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
12 ghmco 18672 . . 3 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
1310, 11, 12syl2an 599 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
14 nmoco.2 . . . 4 𝐿 = (𝑇 normOp 𝑈)
1514nghmcl 23654 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → (𝐿𝐹) ∈ ℝ)
16 nmoco.3 . . . 4 𝑀 = (𝑆 normOp 𝑇)
1716nghmcl 23654 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → (𝑀𝐺) ∈ ℝ)
18 remulcl 10841 . . 3 (((𝐿𝐹) ∈ ℝ ∧ (𝑀𝐺) ∈ ℝ) → ((𝐿𝐹) · (𝑀𝐺)) ∈ ℝ)
1915, 17, 18syl2an 599 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝐿𝐹) · (𝑀𝐺)) ∈ ℝ)
20 nghmrcl1 23659 . . . . 5 (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝑇 ∈ NrmGrp)
2114nmoge0 23648 . . . . 5 ((𝑇 ∈ NrmGrp ∧ 𝑈 ∈ NrmGrp ∧ 𝐹 ∈ (𝑇 GrpHom 𝑈)) → 0 ≤ (𝐿𝐹))
2220, 8, 10, 21syl3anc 1373 . . . 4 (𝐹 ∈ (𝑇 NGHom 𝑈) → 0 ≤ (𝐿𝐹))
2315, 22jca 515 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → ((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹)))
24 nghmrcl2 23660 . . . . 5 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
2516nmoge0 23648 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑀𝐺))
266, 24, 11, 25syl3anc 1373 . . . 4 (𝐺 ∈ (𝑆 NGHom 𝑇) → 0 ≤ (𝑀𝐺))
2717, 26jca 515 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → ((𝑀𝐺) ∈ ℝ ∧ 0 ≤ (𝑀𝐺)))
28 mulge0 11377 . . 3 ((((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹)) ∧ ((𝑀𝐺) ∈ ℝ ∧ 0 ≤ (𝑀𝐺))) → 0 ≤ ((𝐿𝐹) · (𝑀𝐺)))
2923, 27, 28syl2an 599 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ ((𝐿𝐹) · (𝑀𝐺)))
308ad2antrr 726 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑈 ∈ NrmGrp)
3110ad2antrr 726 . . . . . . 7 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 ∈ (𝑇 GrpHom 𝑈))
32 eqid 2739 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
33 eqid 2739 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
3432, 33ghmf 18656 . . . . . . 7 (𝐹 ∈ (𝑇 GrpHom 𝑈) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
3531, 34syl 17 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
3611ad2antlr 727 . . . . . . . 8 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
372, 32ghmf 18656 . . . . . . . 8 (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
3836, 37syl 17 . . . . . . 7 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
39 simprl 771 . . . . . . 7 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑥 ∈ (Base‘𝑆))
4038, 39ffvelrnd 6926 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐺𝑥) ∈ (Base‘𝑇))
4135, 40ffvelrnd 6926 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐹‘(𝐺𝑥)) ∈ (Base‘𝑈))
4233, 4nmcl 23543 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐹‘(𝐺𝑥)) ∈ (Base‘𝑈)) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ∈ ℝ)
4330, 41, 42syl2anc 587 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ∈ ℝ)
4415ad2antrr 726 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐿𝐹) ∈ ℝ)
4520ad2antrr 726 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑇 ∈ NrmGrp)
46 eqid 2739 . . . . . . 7 (norm‘𝑇) = (norm‘𝑇)
4732, 46nmcl 23543 . . . . . 6 ((𝑇 ∈ NrmGrp ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ)
4845, 40, 47syl2anc 587 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ)
4944, 48remulcld 10890 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))) ∈ ℝ)
5017ad2antlr 727 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑀𝐺) ∈ ℝ)
512, 3nmcl 23543 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
526, 51sylan 583 . . . . . . 7 ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
5352ad2ant2lr 748 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
5450, 53remulcld 10890 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ)
5544, 54remulcld 10890 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))) ∈ ℝ)
56 simpll 767 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 ∈ (𝑇 NGHom 𝑈))
5714, 32, 46, 4nmoi 23655 . . . . 5 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))))
5856, 40, 57syl2anc 587 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))))
5923ad2antrr 726 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹)))
6016, 2, 3, 46nmoi 23655 . . . . . 6 ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)))
6160ad2ant2lr 748 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)))
62 lemul2a 11714 . . . . 5 (((((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ ∧ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ ∧ ((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹))) ∧ ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))) → ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
6348, 54, 59, 61, 62syl31anc 1375 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
6443, 49, 55, 58, 63letrd 11016 . . 3 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
65 fvco3 6831 . . . . 5 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
6638, 39, 65syl2anc 587 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
6766fveq2d 6742 . . 3 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘((𝐹𝐺)‘𝑥)) = ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))))
6844recnd 10888 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐿𝐹) ∈ ℂ)
6950recnd 10888 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑀𝐺) ∈ ℂ)
7053recnd 10888 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
7168, 69, 70mulassd 10883 . . 3 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (((𝐿𝐹) · (𝑀𝐺)) · ((norm‘𝑆)‘𝑥)) = ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
7264, 67, 713brtr4d 5101 . 2 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘((𝐹𝐺)‘𝑥)) ≤ (((𝐿𝐹) · (𝑀𝐺)) · ((norm‘𝑆)‘𝑥)))
731, 2, 3, 4, 5, 7, 9, 13, 19, 29, 72nmolb2d 23645 1 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹𝐺)) ≤ ((𝐿𝐹) · (𝑀𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2942   class class class wbr 5069  ccom 5572  wf 6396  cfv 6400  (class class class)co 7234  cr 10755  0cc0 10756   · cmul 10761  cle 10895  Basecbs 16790  0gc0g 16974   GrpHom cghm 18649  normcnm 23503  NrmGrpcngp 23504   normOp cnmo 23632   NGHom cnghm 23633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10812  ax-resscn 10813  ax-1cn 10814  ax-icn 10815  ax-addcl 10816  ax-addrcl 10817  ax-mulcl 10818  ax-mulrcl 10819  ax-mulcom 10820  ax-addass 10821  ax-mulass 10822  ax-distr 10823  ax-i2m1 10824  ax-1ne0 10825  ax-1rid 10826  ax-rnegex 10827  ax-rrecex 10828  ax-cnre 10829  ax-pre-lttri 10830  ax-pre-lttrn 10831  ax-pre-ltadd 10832  ax-pre-mulgt0 10833  ax-pre-sup 10834
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3711  df-csb 3828  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-er 8414  df-map 8533  df-en 8650  df-dom 8651  df-sdom 8652  df-sup 9085  df-inf 9086  df-pnf 10896  df-mnf 10897  df-xr 10898  df-ltxr 10899  df-le 10900  df-sub 11091  df-neg 11092  df-div 11517  df-nn 11858  df-2 11920  df-n0 12118  df-z 12204  df-uz 12466  df-q 12572  df-rp 12614  df-xneg 12731  df-xadd 12732  df-xmul 12733  df-ico 12968  df-0g 16976  df-topgen 16978  df-mgm 18144  df-sgrp 18193  df-mnd 18204  df-mhm 18248  df-grp 18398  df-ghm 18650  df-psmet 20385  df-xmet 20386  df-met 20387  df-bl 20388  df-mopn 20389  df-top 21820  df-topon 21837  df-topsp 21859  df-bases 21872  df-xms 23247  df-ms 23248  df-nm 23509  df-ngp 23510  df-nmo 23635  df-nghm 23636
This theorem is referenced by:  nghmco  23665
  Copyright terms: Public domain W3C validator