MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoco Structured version   Visualization version   GIF version

Theorem nmoco 23901
Description: An upper bound on the operator norm of a composition. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmoco.1 𝑁 = (𝑆 normOp 𝑈)
nmoco.2 𝐿 = (𝑇 normOp 𝑈)
nmoco.3 𝑀 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
nmoco ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹𝐺)) ≤ ((𝐿𝐹) · (𝑀𝐺)))

Proof of Theorem nmoco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoco.1 . 2 𝑁 = (𝑆 normOp 𝑈)
2 eqid 2738 . 2 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2738 . 2 (norm‘𝑆) = (norm‘𝑆)
4 eqid 2738 . 2 (norm‘𝑈) = (norm‘𝑈)
5 eqid 2738 . 2 (0g𝑆) = (0g𝑆)
6 nghmrcl1 23896 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
76adantl 482 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑆 ∈ NrmGrp)
8 nghmrcl2 23897 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝑈 ∈ NrmGrp)
98adantr 481 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑈 ∈ NrmGrp)
10 nghmghm 23898 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈))
11 nghmghm 23898 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
12 ghmco 18854 . . 3 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
1310, 11, 12syl2an 596 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
14 nmoco.2 . . . 4 𝐿 = (𝑇 normOp 𝑈)
1514nghmcl 23891 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → (𝐿𝐹) ∈ ℝ)
16 nmoco.3 . . . 4 𝑀 = (𝑆 normOp 𝑇)
1716nghmcl 23891 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → (𝑀𝐺) ∈ ℝ)
18 remulcl 10956 . . 3 (((𝐿𝐹) ∈ ℝ ∧ (𝑀𝐺) ∈ ℝ) → ((𝐿𝐹) · (𝑀𝐺)) ∈ ℝ)
1915, 17, 18syl2an 596 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝐿𝐹) · (𝑀𝐺)) ∈ ℝ)
20 nghmrcl1 23896 . . . . 5 (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝑇 ∈ NrmGrp)
2114nmoge0 23885 . . . . 5 ((𝑇 ∈ NrmGrp ∧ 𝑈 ∈ NrmGrp ∧ 𝐹 ∈ (𝑇 GrpHom 𝑈)) → 0 ≤ (𝐿𝐹))
2220, 8, 10, 21syl3anc 1370 . . . 4 (𝐹 ∈ (𝑇 NGHom 𝑈) → 0 ≤ (𝐿𝐹))
2315, 22jca 512 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → ((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹)))
24 nghmrcl2 23897 . . . . 5 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
2516nmoge0 23885 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑀𝐺))
266, 24, 11, 25syl3anc 1370 . . . 4 (𝐺 ∈ (𝑆 NGHom 𝑇) → 0 ≤ (𝑀𝐺))
2717, 26jca 512 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → ((𝑀𝐺) ∈ ℝ ∧ 0 ≤ (𝑀𝐺)))
28 mulge0 11493 . . 3 ((((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹)) ∧ ((𝑀𝐺) ∈ ℝ ∧ 0 ≤ (𝑀𝐺))) → 0 ≤ ((𝐿𝐹) · (𝑀𝐺)))
2923, 27, 28syl2an 596 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ ((𝐿𝐹) · (𝑀𝐺)))
308ad2antrr 723 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑈 ∈ NrmGrp)
3110ad2antrr 723 . . . . . . 7 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 ∈ (𝑇 GrpHom 𝑈))
32 eqid 2738 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
33 eqid 2738 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
3432, 33ghmf 18838 . . . . . . 7 (𝐹 ∈ (𝑇 GrpHom 𝑈) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
3531, 34syl 17 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
3611ad2antlr 724 . . . . . . . 8 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
372, 32ghmf 18838 . . . . . . . 8 (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
3836, 37syl 17 . . . . . . 7 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
39 simprl 768 . . . . . . 7 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑥 ∈ (Base‘𝑆))
4038, 39ffvelrnd 6962 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐺𝑥) ∈ (Base‘𝑇))
4135, 40ffvelrnd 6962 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐹‘(𝐺𝑥)) ∈ (Base‘𝑈))
4233, 4nmcl 23772 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐹‘(𝐺𝑥)) ∈ (Base‘𝑈)) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ∈ ℝ)
4330, 41, 42syl2anc 584 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ∈ ℝ)
4415ad2antrr 723 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐿𝐹) ∈ ℝ)
4520ad2antrr 723 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑇 ∈ NrmGrp)
46 eqid 2738 . . . . . . 7 (norm‘𝑇) = (norm‘𝑇)
4732, 46nmcl 23772 . . . . . 6 ((𝑇 ∈ NrmGrp ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ)
4845, 40, 47syl2anc 584 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ)
4944, 48remulcld 11005 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))) ∈ ℝ)
5017ad2antlr 724 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑀𝐺) ∈ ℝ)
512, 3nmcl 23772 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
526, 51sylan 580 . . . . . . 7 ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
5352ad2ant2lr 745 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
5450, 53remulcld 11005 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ)
5544, 54remulcld 11005 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))) ∈ ℝ)
56 simpll 764 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 ∈ (𝑇 NGHom 𝑈))
5714, 32, 46, 4nmoi 23892 . . . . 5 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))))
5856, 40, 57syl2anc 584 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))))
5923ad2antrr 723 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹)))
6016, 2, 3, 46nmoi 23892 . . . . . 6 ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)))
6160ad2ant2lr 745 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)))
62 lemul2a 11830 . . . . 5 (((((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ ∧ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ ∧ ((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹))) ∧ ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))) → ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
6348, 54, 59, 61, 62syl31anc 1372 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
6443, 49, 55, 58, 63letrd 11132 . . 3 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
65 fvco3 6867 . . . . 5 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
6638, 39, 65syl2anc 584 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
6766fveq2d 6778 . . 3 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘((𝐹𝐺)‘𝑥)) = ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))))
6844recnd 11003 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐿𝐹) ∈ ℂ)
6950recnd 11003 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑀𝐺) ∈ ℂ)
7053recnd 11003 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
7168, 69, 70mulassd 10998 . . 3 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (((𝐿𝐹) · (𝑀𝐺)) · ((norm‘𝑆)‘𝑥)) = ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
7264, 67, 713brtr4d 5106 . 2 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘((𝐹𝐺)‘𝑥)) ≤ (((𝐿𝐹) · (𝑀𝐺)) · ((norm‘𝑆)‘𝑥)))
731, 2, 3, 4, 5, 7, 9, 13, 19, 29, 72nmolb2d 23882 1 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹𝐺)) ≤ ((𝐿𝐹) · (𝑀𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   · cmul 10876  cle 11010  Basecbs 16912  0gc0g 17150   GrpHom cghm 18831  normcnm 23732  NrmGrpcngp 23733   normOp cnmo 23869   NGHom cnghm 23870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-ghm 18832  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-xms 23473  df-ms 23474  df-nm 23738  df-ngp 23739  df-nmo 23872  df-nghm 23873
This theorem is referenced by:  nghmco  23902
  Copyright terms: Public domain W3C validator