MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoco Structured version   Visualization version   GIF version

Theorem nmoco 24674
Description: An upper bound on the operator norm of a composition. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmoco.1 𝑁 = (𝑆 normOp 𝑈)
nmoco.2 𝐿 = (𝑇 normOp 𝑈)
nmoco.3 𝑀 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
nmoco ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹𝐺)) ≤ ((𝐿𝐹) · (𝑀𝐺)))

Proof of Theorem nmoco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoco.1 . 2 𝑁 = (𝑆 normOp 𝑈)
2 eqid 2735 . 2 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2735 . 2 (norm‘𝑆) = (norm‘𝑆)
4 eqid 2735 . 2 (norm‘𝑈) = (norm‘𝑈)
5 eqid 2735 . 2 (0g𝑆) = (0g𝑆)
6 nghmrcl1 24669 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
76adantl 481 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑆 ∈ NrmGrp)
8 nghmrcl2 24670 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝑈 ∈ NrmGrp)
98adantr 480 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑈 ∈ NrmGrp)
10 nghmghm 24671 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈))
11 nghmghm 24671 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
12 ghmco 19217 . . 3 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
1310, 11, 12syl2an 596 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
14 nmoco.2 . . . 4 𝐿 = (𝑇 normOp 𝑈)
1514nghmcl 24664 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → (𝐿𝐹) ∈ ℝ)
16 nmoco.3 . . . 4 𝑀 = (𝑆 normOp 𝑇)
1716nghmcl 24664 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → (𝑀𝐺) ∈ ℝ)
18 remulcl 11212 . . 3 (((𝐿𝐹) ∈ ℝ ∧ (𝑀𝐺) ∈ ℝ) → ((𝐿𝐹) · (𝑀𝐺)) ∈ ℝ)
1915, 17, 18syl2an 596 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝐿𝐹) · (𝑀𝐺)) ∈ ℝ)
20 nghmrcl1 24669 . . . . 5 (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝑇 ∈ NrmGrp)
2114nmoge0 24658 . . . . 5 ((𝑇 ∈ NrmGrp ∧ 𝑈 ∈ NrmGrp ∧ 𝐹 ∈ (𝑇 GrpHom 𝑈)) → 0 ≤ (𝐿𝐹))
2220, 8, 10, 21syl3anc 1373 . . . 4 (𝐹 ∈ (𝑇 NGHom 𝑈) → 0 ≤ (𝐿𝐹))
2315, 22jca 511 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → ((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹)))
24 nghmrcl2 24670 . . . . 5 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
2516nmoge0 24658 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑀𝐺))
266, 24, 11, 25syl3anc 1373 . . . 4 (𝐺 ∈ (𝑆 NGHom 𝑇) → 0 ≤ (𝑀𝐺))
2717, 26jca 511 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → ((𝑀𝐺) ∈ ℝ ∧ 0 ≤ (𝑀𝐺)))
28 mulge0 11753 . . 3 ((((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹)) ∧ ((𝑀𝐺) ∈ ℝ ∧ 0 ≤ (𝑀𝐺))) → 0 ≤ ((𝐿𝐹) · (𝑀𝐺)))
2923, 27, 28syl2an 596 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ ((𝐿𝐹) · (𝑀𝐺)))
308ad2antrr 726 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑈 ∈ NrmGrp)
3110ad2antrr 726 . . . . . . 7 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 ∈ (𝑇 GrpHom 𝑈))
32 eqid 2735 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
33 eqid 2735 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
3432, 33ghmf 19201 . . . . . . 7 (𝐹 ∈ (𝑇 GrpHom 𝑈) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
3531, 34syl 17 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
3611ad2antlr 727 . . . . . . . 8 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
372, 32ghmf 19201 . . . . . . . 8 (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
3836, 37syl 17 . . . . . . 7 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
39 simprl 770 . . . . . . 7 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑥 ∈ (Base‘𝑆))
4038, 39ffvelcdmd 7074 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐺𝑥) ∈ (Base‘𝑇))
4135, 40ffvelcdmd 7074 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐹‘(𝐺𝑥)) ∈ (Base‘𝑈))
4233, 4nmcl 24553 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐹‘(𝐺𝑥)) ∈ (Base‘𝑈)) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ∈ ℝ)
4330, 41, 42syl2anc 584 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ∈ ℝ)
4415ad2antrr 726 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐿𝐹) ∈ ℝ)
4520ad2antrr 726 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑇 ∈ NrmGrp)
46 eqid 2735 . . . . . . 7 (norm‘𝑇) = (norm‘𝑇)
4732, 46nmcl 24553 . . . . . 6 ((𝑇 ∈ NrmGrp ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ)
4845, 40, 47syl2anc 584 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ)
4944, 48remulcld 11263 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))) ∈ ℝ)
5017ad2antlr 727 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑀𝐺) ∈ ℝ)
512, 3nmcl 24553 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
526, 51sylan 580 . . . . . . 7 ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
5352ad2ant2lr 748 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
5450, 53remulcld 11263 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ)
5544, 54remulcld 11263 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))) ∈ ℝ)
56 simpll 766 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 ∈ (𝑇 NGHom 𝑈))
5714, 32, 46, 4nmoi 24665 . . . . 5 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))))
5856, 40, 57syl2anc 584 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))))
5923ad2antrr 726 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹)))
6016, 2, 3, 46nmoi 24665 . . . . . 6 ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)))
6160ad2ant2lr 748 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)))
62 lemul2a 12094 . . . . 5 (((((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ ∧ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ ∧ ((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹))) ∧ ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))) → ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
6348, 54, 59, 61, 62syl31anc 1375 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
6443, 49, 55, 58, 63letrd 11390 . . 3 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
65 fvco3 6977 . . . . 5 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
6638, 39, 65syl2anc 584 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
6766fveq2d 6879 . . 3 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘((𝐹𝐺)‘𝑥)) = ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))))
6844recnd 11261 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐿𝐹) ∈ ℂ)
6950recnd 11261 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑀𝐺) ∈ ℂ)
7053recnd 11261 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
7168, 69, 70mulassd 11256 . . 3 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (((𝐿𝐹) · (𝑀𝐺)) · ((norm‘𝑆)‘𝑥)) = ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
7264, 67, 713brtr4d 5151 . 2 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘((𝐹𝐺)‘𝑥)) ≤ (((𝐿𝐹) · (𝑀𝐺)) · ((norm‘𝑆)‘𝑥)))
731, 2, 3, 4, 5, 7, 9, 13, 19, 29, 72nmolb2d 24655 1 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹𝐺)) ≤ ((𝐿𝐹) · (𝑀𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403  cr 11126  0cc0 11127   · cmul 11132  cle 11268  Basecbs 17226  0gc0g 17451   GrpHom cghm 19193  normcnm 24513  NrmGrpcngp 24514   normOp cnmo 24642   NGHom cnghm 24643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-n0 12500  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ico 13366  df-0g 17453  df-topgen 17455  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-grp 18917  df-ghm 19194  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-xms 24257  df-ms 24258  df-nm 24519  df-ngp 24520  df-nmo 24645  df-nghm 24646
This theorem is referenced by:  nghmco  24675
  Copyright terms: Public domain W3C validator