MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoco Structured version   Visualization version   GIF version

Theorem nmoco 23049
Description: An upper bound on the operator norm of a composition. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmoco.1 𝑁 = (𝑆 normOp 𝑈)
nmoco.2 𝐿 = (𝑇 normOp 𝑈)
nmoco.3 𝑀 = (𝑆 normOp 𝑇)
Assertion
Ref Expression
nmoco ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹𝐺)) ≤ ((𝐿𝐹) · (𝑀𝐺)))

Proof of Theorem nmoco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoco.1 . 2 𝑁 = (𝑆 normOp 𝑈)
2 eqid 2779 . 2 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2779 . 2 (norm‘𝑆) = (norm‘𝑆)
4 eqid 2779 . 2 (norm‘𝑈) = (norm‘𝑈)
5 eqid 2779 . 2 (0g𝑆) = (0g𝑆)
6 nghmrcl1 23044 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp)
76adantl 474 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑆 ∈ NrmGrp)
8 nghmrcl2 23045 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝑈 ∈ NrmGrp)
98adantr 473 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑈 ∈ NrmGrp)
10 nghmghm 23046 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈))
11 nghmghm 23046 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
12 ghmco 18149 . . 3 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
1310, 11, 12syl2an 586 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
14 nmoco.2 . . . 4 𝐿 = (𝑇 normOp 𝑈)
1514nghmcl 23039 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → (𝐿𝐹) ∈ ℝ)
16 nmoco.3 . . . 4 𝑀 = (𝑆 normOp 𝑇)
1716nghmcl 23039 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → (𝑀𝐺) ∈ ℝ)
18 remulcl 10420 . . 3 (((𝐿𝐹) ∈ ℝ ∧ (𝑀𝐺) ∈ ℝ) → ((𝐿𝐹) · (𝑀𝐺)) ∈ ℝ)
1915, 17, 18syl2an 586 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝐿𝐹) · (𝑀𝐺)) ∈ ℝ)
20 nghmrcl1 23044 . . . . 5 (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝑇 ∈ NrmGrp)
2114nmoge0 23033 . . . . 5 ((𝑇 ∈ NrmGrp ∧ 𝑈 ∈ NrmGrp ∧ 𝐹 ∈ (𝑇 GrpHom 𝑈)) → 0 ≤ (𝐿𝐹))
2220, 8, 10, 21syl3anc 1351 . . . 4 (𝐹 ∈ (𝑇 NGHom 𝑈) → 0 ≤ (𝐿𝐹))
2315, 22jca 504 . . 3 (𝐹 ∈ (𝑇 NGHom 𝑈) → ((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹)))
24 nghmrcl2 23045 . . . . 5 (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp)
2516nmoge0 23033 . . . . 5 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑀𝐺))
266, 24, 11, 25syl3anc 1351 . . . 4 (𝐺 ∈ (𝑆 NGHom 𝑇) → 0 ≤ (𝑀𝐺))
2717, 26jca 504 . . 3 (𝐺 ∈ (𝑆 NGHom 𝑇) → ((𝑀𝐺) ∈ ℝ ∧ 0 ≤ (𝑀𝐺)))
28 mulge0 10959 . . 3 ((((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹)) ∧ ((𝑀𝐺) ∈ ℝ ∧ 0 ≤ (𝑀𝐺))) → 0 ≤ ((𝐿𝐹) · (𝑀𝐺)))
2923, 27, 28syl2an 586 . 2 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 0 ≤ ((𝐿𝐹) · (𝑀𝐺)))
308ad2antrr 713 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑈 ∈ NrmGrp)
3110ad2antrr 713 . . . . . . 7 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 ∈ (𝑇 GrpHom 𝑈))
32 eqid 2779 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
33 eqid 2779 . . . . . . . 8 (Base‘𝑈) = (Base‘𝑈)
3432, 33ghmf 18133 . . . . . . 7 (𝐹 ∈ (𝑇 GrpHom 𝑈) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
3531, 34syl 17 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
3611ad2antlr 714 . . . . . . . 8 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
372, 32ghmf 18133 . . . . . . . 8 (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
3836, 37syl 17 . . . . . . 7 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
39 simprl 758 . . . . . . 7 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑥 ∈ (Base‘𝑆))
4038, 39ffvelrnd 6677 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐺𝑥) ∈ (Base‘𝑇))
4135, 40ffvelrnd 6677 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐹‘(𝐺𝑥)) ∈ (Base‘𝑈))
4233, 4nmcl 22928 . . . . 5 ((𝑈 ∈ NrmGrp ∧ (𝐹‘(𝐺𝑥)) ∈ (Base‘𝑈)) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ∈ ℝ)
4330, 41, 42syl2anc 576 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ∈ ℝ)
4415ad2antrr 713 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐿𝐹) ∈ ℝ)
4520ad2antrr 713 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝑇 ∈ NrmGrp)
46 eqid 2779 . . . . . . 7 (norm‘𝑇) = (norm‘𝑇)
4732, 46nmcl 22928 . . . . . 6 ((𝑇 ∈ NrmGrp ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ)
4845, 40, 47syl2anc 576 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ)
4944, 48remulcld 10470 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))) ∈ ℝ)
5017ad2antlr 714 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑀𝐺) ∈ ℝ)
512, 3nmcl 22928 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
526, 51sylan 572 . . . . . . 7 ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
5352ad2ant2lr 735 . . . . . 6 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
5450, 53remulcld 10470 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ)
5544, 54remulcld 10470 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))) ∈ ℝ)
56 simpll 754 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → 𝐹 ∈ (𝑇 NGHom 𝑈))
5714, 32, 46, 4nmoi 23040 . . . . 5 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ (𝐺𝑥) ∈ (Base‘𝑇)) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))))
5856, 40, 57syl2anc 576 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))))
5923ad2antrr 713 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹)))
6016, 2, 3, 46nmoi 23040 . . . . . 6 ((𝐺 ∈ (𝑆 NGHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)))
6160ad2ant2lr 735 . . . . 5 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)))
62 lemul2a 11296 . . . . 5 (((((norm‘𝑇)‘(𝐺𝑥)) ∈ ℝ ∧ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥)) ∈ ℝ ∧ ((𝐿𝐹) ∈ ℝ ∧ 0 ≤ (𝐿𝐹))) ∧ ((norm‘𝑇)‘(𝐺𝑥)) ≤ ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))) → ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
6348, 54, 59, 61, 62syl31anc 1353 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐿𝐹) · ((norm‘𝑇)‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
6443, 49, 55, 58, 63letrd 10597 . . 3 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))) ≤ ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
65 fvco3 6588 . . . . 5 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
6638, 39, 65syl2anc 576 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
6766fveq2d 6503 . . 3 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘((𝐹𝐺)‘𝑥)) = ((norm‘𝑈)‘(𝐹‘(𝐺𝑥))))
6844recnd 10468 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝐿𝐹) ∈ ℂ)
6950recnd 10468 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (𝑀𝐺) ∈ ℂ)
7053recnd 10468 . . . 4 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
7168, 69, 70mulassd 10463 . . 3 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → (((𝐿𝐹) · (𝑀𝐺)) · ((norm‘𝑆)‘𝑥)) = ((𝐿𝐹) · ((𝑀𝐺) · ((norm‘𝑆)‘𝑥))))
7264, 67, 713brtr4d 4961 . 2 (((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 ≠ (0g𝑆))) → ((norm‘𝑈)‘((𝐹𝐺)‘𝑥)) ≤ (((𝐿𝐹) · (𝑀𝐺)) · ((norm‘𝑆)‘𝑥)))
731, 2, 3, 4, 5, 7, 9, 13, 19, 29, 72nmolb2d 23030 1 ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝑁‘(𝐹𝐺)) ≤ ((𝐿𝐹) · (𝑀𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wne 2968   class class class wbr 4929  ccom 5411  wf 6184  cfv 6188  (class class class)co 6976  cr 10334  0cc0 10335   · cmul 10340  cle 10475  Basecbs 16339  0gc0g 16569   GrpHom cghm 18126  normcnm 22889  NrmGrpcngp 22890   normOp cnmo 23017   NGHom cnghm 23018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-sup 8701  df-inf 8702  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-n0 11708  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-ico 12560  df-0g 16571  df-topgen 16573  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-mhm 17803  df-grp 17894  df-ghm 18127  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-top 21206  df-topon 21223  df-topsp 21245  df-bases 21258  df-xms 22633  df-ms 22634  df-nm 22895  df-ngp 22896  df-nmo 23020  df-nghm 23021
This theorem is referenced by:  nghmco  23050
  Copyright terms: Public domain W3C validator