![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nghmco | Structured version Visualization version GIF version |
Description: The composition of normed group homomorphisms is a normed group homomorphism. (Contributed by Mario Carneiro, 20-Oct-2015.) |
Ref | Expression |
---|---|
nghmco | ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 NGHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nghmrcl1 23034 | . . 3 ⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp) | |
2 | 1 | adantl 474 | . 2 ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑆 ∈ NrmGrp) |
3 | nghmrcl2 23035 | . . 3 ⊢ (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝑈 ∈ NrmGrp) | |
4 | 3 | adantr 473 | . 2 ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑈 ∈ NrmGrp) |
5 | nghmghm 23036 | . . 3 ⊢ (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈)) | |
6 | nghmghm 23036 | . . 3 ⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) | |
7 | ghmco 18139 | . . 3 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | |
8 | 5, 6, 7 | syl2an 586 | . 2 ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
9 | eqid 2772 | . . . 4 ⊢ (𝑇 normOp 𝑈) = (𝑇 normOp 𝑈) | |
10 | 9 | nghmcl 23029 | . . 3 ⊢ (𝐹 ∈ (𝑇 NGHom 𝑈) → ((𝑇 normOp 𝑈)‘𝐹) ∈ ℝ) |
11 | eqid 2772 | . . . 4 ⊢ (𝑆 normOp 𝑇) = (𝑆 normOp 𝑇) | |
12 | 11 | nghmcl 23029 | . . 3 ⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → ((𝑆 normOp 𝑇)‘𝐺) ∈ ℝ) |
13 | remulcl 10412 | . . 3 ⊢ ((((𝑇 normOp 𝑈)‘𝐹) ∈ ℝ ∧ ((𝑆 normOp 𝑇)‘𝐺) ∈ ℝ) → (((𝑇 normOp 𝑈)‘𝐹) · ((𝑆 normOp 𝑇)‘𝐺)) ∈ ℝ) | |
14 | 10, 12, 13 | syl2an 586 | . 2 ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (((𝑇 normOp 𝑈)‘𝐹) · ((𝑆 normOp 𝑇)‘𝐺)) ∈ ℝ) |
15 | eqid 2772 | . . 3 ⊢ (𝑆 normOp 𝑈) = (𝑆 normOp 𝑈) | |
16 | 15, 9, 11 | nmoco 23039 | . 2 ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝑆 normOp 𝑈)‘(𝐹 ∘ 𝐺)) ≤ (((𝑇 normOp 𝑈)‘𝐹) · ((𝑆 normOp 𝑇)‘𝐺))) |
17 | 15 | bddnghm 23028 | . 2 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑈 ∈ NrmGrp ∧ (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) ∧ ((((𝑇 normOp 𝑈)‘𝐹) · ((𝑆 normOp 𝑇)‘𝐺)) ∈ ℝ ∧ ((𝑆 normOp 𝑈)‘(𝐹 ∘ 𝐺)) ≤ (((𝑇 normOp 𝑈)‘𝐹) · ((𝑆 normOp 𝑇)‘𝐺)))) → (𝐹 ∘ 𝐺) ∈ (𝑆 NGHom 𝑈)) |
18 | 2, 4, 8, 14, 16, 17 | syl32anc 1358 | 1 ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 NGHom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2048 class class class wbr 4923 ∘ ccom 5404 ‘cfv 6182 (class class class)co 6970 ℝcr 10326 · cmul 10332 ≤ cle 10467 GrpHom cghm 18116 NrmGrpcngp 22880 normOp cnmo 23007 NGHom cnghm 23008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-map 8200 df-en 8299 df-dom 8300 df-sdom 8301 df-sup 8693 df-inf 8694 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-n0 11701 df-z 11787 df-uz 12052 df-q 12156 df-rp 12198 df-xneg 12317 df-xadd 12318 df-xmul 12319 df-ico 12553 df-0g 16561 df-topgen 16563 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-mhm 17793 df-grp 17884 df-ghm 18117 df-psmet 20229 df-xmet 20230 df-met 20231 df-bl 20232 df-mopn 20233 df-top 21196 df-topon 21213 df-topsp 21235 df-bases 21248 df-xms 22623 df-ms 22624 df-nm 22885 df-ngp 22886 df-nmo 23010 df-nghm 23011 |
This theorem is referenced by: nmhmco 23058 |
Copyright terms: Public domain | W3C validator |