| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nghmco | Structured version Visualization version GIF version | ||
| Description: The composition of normed group homomorphisms is a normed group homomorphism. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| Ref | Expression |
|---|---|
| nghmco | ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 NGHom 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nghmrcl1 24753 | . . 3 ⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑆 ∈ NrmGrp) |
| 3 | nghmrcl2 24754 | . . 3 ⊢ (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝑈 ∈ NrmGrp) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → 𝑈 ∈ NrmGrp) |
| 5 | nghmghm 24755 | . . 3 ⊢ (𝐹 ∈ (𝑇 NGHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈)) | |
| 6 | nghmghm 24755 | . . 3 ⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) | |
| 7 | ghmco 19254 | . . 3 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | |
| 8 | 5, 6, 7 | syl2an 596 | . 2 ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
| 9 | eqid 2737 | . . . 4 ⊢ (𝑇 normOp 𝑈) = (𝑇 normOp 𝑈) | |
| 10 | 9 | nghmcl 24748 | . . 3 ⊢ (𝐹 ∈ (𝑇 NGHom 𝑈) → ((𝑇 normOp 𝑈)‘𝐹) ∈ ℝ) |
| 11 | eqid 2737 | . . . 4 ⊢ (𝑆 normOp 𝑇) = (𝑆 normOp 𝑇) | |
| 12 | 11 | nghmcl 24748 | . . 3 ⊢ (𝐺 ∈ (𝑆 NGHom 𝑇) → ((𝑆 normOp 𝑇)‘𝐺) ∈ ℝ) |
| 13 | remulcl 11240 | . . 3 ⊢ ((((𝑇 normOp 𝑈)‘𝐹) ∈ ℝ ∧ ((𝑆 normOp 𝑇)‘𝐺) ∈ ℝ) → (((𝑇 normOp 𝑈)‘𝐹) · ((𝑆 normOp 𝑇)‘𝐺)) ∈ ℝ) | |
| 14 | 10, 12, 13 | syl2an 596 | . 2 ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (((𝑇 normOp 𝑈)‘𝐹) · ((𝑆 normOp 𝑇)‘𝐺)) ∈ ℝ) |
| 15 | eqid 2737 | . . 3 ⊢ (𝑆 normOp 𝑈) = (𝑆 normOp 𝑈) | |
| 16 | 15, 9, 11 | nmoco 24758 | . 2 ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → ((𝑆 normOp 𝑈)‘(𝐹 ∘ 𝐺)) ≤ (((𝑇 normOp 𝑈)‘𝐹) · ((𝑆 normOp 𝑇)‘𝐺))) |
| 17 | 15 | bddnghm 24747 | . 2 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑈 ∈ NrmGrp ∧ (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) ∧ ((((𝑇 normOp 𝑈)‘𝐹) · ((𝑆 normOp 𝑇)‘𝐺)) ∈ ℝ ∧ ((𝑆 normOp 𝑈)‘(𝐹 ∘ 𝐺)) ≤ (((𝑇 normOp 𝑈)‘𝐹) · ((𝑆 normOp 𝑇)‘𝐺)))) → (𝐹 ∘ 𝐺) ∈ (𝑆 NGHom 𝑈)) |
| 18 | 2, 4, 8, 14, 16, 17 | syl32anc 1380 | 1 ⊢ ((𝐹 ∈ (𝑇 NGHom 𝑈) ∧ 𝐺 ∈ (𝑆 NGHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 NGHom 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5143 ∘ ccom 5689 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 · cmul 11160 ≤ cle 11296 GrpHom cghm 19230 NrmGrpcngp 24590 normOp cnmo 24726 NGHom cnghm 24727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ico 13393 df-0g 17486 df-topgen 17488 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-ghm 19231 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-xms 24330 df-ms 24331 df-nm 24595 df-ngp 24596 df-nmo 24729 df-nghm 24730 |
| This theorem is referenced by: nmhmco 24777 |
| Copyright terms: Public domain | W3C validator |