MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmco Structured version   Visualization version   GIF version

Theorem rhmco 20502
Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
rhmco ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 RingHom 𝑈))

Proof of Theorem rhmco
StepHypRef Expression
1 rhmrcl2 20478 . . 3 (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝑈 ∈ Ring)
2 rhmrcl1 20477 . . 3 (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring)
31, 2anim12ci 614 . 2 ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝑆 ∈ Ring ∧ 𝑈 ∈ Ring))
4 rhmghm 20485 . . . 4 (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈))
5 rhmghm 20485 . . . 4 (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
6 ghmco 19255 . . . 4 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
74, 5, 6syl2an 596 . . 3 ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
8 eqid 2736 . . . . 5 (mulGrp‘𝑇) = (mulGrp‘𝑇)
9 eqid 2736 . . . . 5 (mulGrp‘𝑈) = (mulGrp‘𝑈)
108, 9rhmmhm 20480 . . . 4 (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝐹 ∈ ((mulGrp‘𝑇) MndHom (mulGrp‘𝑈)))
11 eqid 2736 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1211, 8rhmmhm 20480 . . . 4 (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
13 mhmco 18837 . . . 4 ((𝐹 ∈ ((mulGrp‘𝑇) MndHom (mulGrp‘𝑈)) ∧ 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) → (𝐹𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))
1410, 12, 13syl2an 596 . . 3 ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))
157, 14jca 511 . 2 ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))
1611, 9isrhm 20479 . 2 ((𝐹𝐺) ∈ (𝑆 RingHom 𝑈) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))))
173, 15, 16sylanbrc 583 1 ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 RingHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  ccom 5688  cfv 6560  (class class class)co 7432   MndHom cmhm 18795   GrpHom cghm 19231  mulGrpcmgp 20138  Ringcrg 20231   RingHom crh 20470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-grp 18955  df-ghm 19232  df-mgp 20139  df-ur 20180  df-ring 20233  df-rhm 20473
This theorem is referenced by:  rhmsubcsetclem2  20662  rhmsubcrngclem2  20668  rhmsubclem4  20689  chrrhm  21547  evls1rhm  22327  evl1rhm  22337  aks5lem1  42188  rimco  42533  selvcllem2  42593  selvvvval  42600  rhmsubcALTVlem4  48205  funcringcsetcALTV2lem9  48219  ringccatidALTV  48227  funcringcsetclem9ALTV  48242
  Copyright terms: Public domain W3C validator