![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmco | Structured version Visualization version GIF version |
Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
rhmco | ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmrcl2 19113 | . . 3 ⊢ (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝑈 ∈ Ring) | |
2 | rhmrcl1 19112 | . . 3 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring) | |
3 | 1, 2 | anim12ci 607 | . 2 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝑆 ∈ Ring ∧ 𝑈 ∈ Ring)) |
4 | rhmghm 19118 | . . . 4 ⊢ (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈)) | |
5 | rhmghm 19118 | . . . 4 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) | |
6 | ghmco 18068 | . . . 4 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | |
7 | 4, 5, 6 | syl2an 589 | . . 3 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
8 | eqid 2778 | . . . . 5 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
9 | eqid 2778 | . . . . 5 ⊢ (mulGrp‘𝑈) = (mulGrp‘𝑈) | |
10 | 8, 9 | rhmmhm 19115 | . . . 4 ⊢ (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝐹 ∈ ((mulGrp‘𝑇) MndHom (mulGrp‘𝑈))) |
11 | eqid 2778 | . . . . 5 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
12 | 11, 8 | rhmmhm 19115 | . . . 4 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
13 | mhmco 17752 | . . . 4 ⊢ ((𝐹 ∈ ((mulGrp‘𝑇) MndHom (mulGrp‘𝑈)) ∧ 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) → (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))) | |
14 | 10, 12, 13 | syl2an 589 | . . 3 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))) |
15 | 7, 14 | jca 507 | . 2 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) |
16 | 11, 9 | isrhm 19114 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))) |
17 | 3, 15, 16 | sylanbrc 578 | 1 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2107 ∘ ccom 5361 ‘cfv 6137 (class class class)co 6924 MndHom cmhm 17723 GrpHom cghm 18045 mulGrpcmgp 18880 Ringcrg 18938 RingHom crh 19105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11379 df-2 11442 df-ndx 16262 df-slot 16263 df-base 16265 df-sets 16266 df-plusg 16355 df-0g 16492 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-mhm 17725 df-grp 17816 df-ghm 18046 df-mgp 18881 df-ur 18893 df-ring 18940 df-rnghom 19108 |
This theorem is referenced by: evls1rhm 20087 evl1rhm 20096 chrrhm 20279 rhmsubcsetclem2 43047 rhmsubcrngclem2 43053 funcringcsetcALTV2lem9 43069 ringccatidALTV 43077 funcringcsetclem9ALTV 43092 rhmsubclem4 43114 rhmsubcALTVlem4 43132 |
Copyright terms: Public domain | W3C validator |