![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmco | Structured version Visualization version GIF version |
Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
rhmco | ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmrcl2 20256 | . . 3 ⊢ (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝑈 ∈ Ring) | |
2 | rhmrcl1 20255 | . . 3 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring) | |
3 | 1, 2 | anim12ci 615 | . 2 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝑆 ∈ Ring ∧ 𝑈 ∈ Ring)) |
4 | rhmghm 20262 | . . . 4 ⊢ (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈)) | |
5 | rhmghm 20262 | . . . 4 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) | |
6 | ghmco 19112 | . . . 4 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | |
7 | 4, 5, 6 | syl2an 597 | . . 3 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
8 | eqid 2733 | . . . . 5 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
9 | eqid 2733 | . . . . 5 ⊢ (mulGrp‘𝑈) = (mulGrp‘𝑈) | |
10 | 8, 9 | rhmmhm 20258 | . . . 4 ⊢ (𝐹 ∈ (𝑇 RingHom 𝑈) → 𝐹 ∈ ((mulGrp‘𝑇) MndHom (mulGrp‘𝑈))) |
11 | eqid 2733 | . . . . 5 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
12 | 11, 8 | rhmmhm 20258 | . . . 4 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
13 | mhmco 18704 | . . . 4 ⊢ ((𝐹 ∈ ((mulGrp‘𝑇) MndHom (mulGrp‘𝑈)) ∧ 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) → (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))) | |
14 | 10, 12, 13 | syl2an 597 | . . 3 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))) |
15 | 7, 14 | jca 513 | . 2 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈)))) |
16 | 11, 9 | isrhm 20257 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈) ↔ ((𝑆 ∈ Ring ∧ 𝑈 ∈ Ring) ∧ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑈))))) |
17 | 3, 15, 16 | sylanbrc 584 | 1 ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∘ ccom 5681 ‘cfv 6544 (class class class)co 7409 MndHom cmhm 18669 GrpHom cghm 19089 mulGrpcmgp 19987 Ringcrg 20056 RingHom crh 20248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-grp 18822 df-ghm 19090 df-mgp 19988 df-ur 20005 df-ring 20058 df-rnghom 20251 |
This theorem is referenced by: chrrhm 21083 evls1rhm 21841 evl1rhm 21851 rimco 41093 selvcllem2 41150 selvvvval 41157 rhmsubcsetclem2 46920 rhmsubcrngclem2 46926 funcringcsetcALTV2lem9 46942 ringccatidALTV 46950 funcringcsetclem9ALTV 46965 rhmsubclem4 46987 rhmsubcALTVlem4 47005 |
Copyright terms: Public domain | W3C validator |