| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubgcld | Structured version Visualization version GIF version | ||
| Description: A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
| Ref | Expression |
|---|---|
| nelsubginvcld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| nelsubginvcld.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| nelsubginvcld.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) |
| nelsubginvcld.b | ⊢ 𝐵 = (Base‘𝐺) |
| nelsubgcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| nelsubgcld.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| nelsubgcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelsubginvcld.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | nelsubginvcld.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) | |
| 3 | 2 | eldifad 3909 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 4 | nelsubginvcld.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 5 | nelsubginvcld.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | 5 | subgss 19040 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 8 | nelsubgcld.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 9 | 7, 8 | sseldd 3930 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 10 | nelsubgcld.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 11 | 5, 10 | grpcl 18854 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 12 | 1, 3, 9, 11 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| 13 | 2 | eldifbd 3910 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) |
| 14 | eqid 2731 | . . . . . . 7 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 15 | 5, 10, 14 | grppncan 18944 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) = 𝑋) |
| 16 | 1, 3, 9, 15 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) = 𝑋) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) = 𝑋) |
| 18 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 19 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | |
| 20 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → 𝑌 ∈ 𝑆) |
| 21 | 14 | subgsubcl 19050 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 + 𝑌) ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) ∈ 𝑆) |
| 22 | 18, 19, 20, 21 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) ∈ 𝑆) |
| 23 | 17, 22 | eqeltrrd 2832 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → 𝑋 ∈ 𝑆) |
| 24 | 13, 23 | mtand 815 | . 2 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑆) |
| 25 | 12, 24 | eldifd 3908 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Grpcgrp 18846 -gcsg 18848 SubGrpcsubg 19033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 |
| This theorem is referenced by: nelsubgsubcld 42590 |
| Copyright terms: Public domain | W3C validator |