![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubgcld | Structured version Visualization version GIF version |
Description: A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
Ref | Expression |
---|---|
nelsubginvcld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
nelsubginvcld.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
nelsubginvcld.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) |
nelsubginvcld.b | ⊢ 𝐵 = (Base‘𝐺) |
nelsubgcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
nelsubgcld.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
nelsubgcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelsubginvcld.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | nelsubginvcld.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) | |
3 | 2 | eldifad 3960 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
4 | nelsubginvcld.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
5 | nelsubginvcld.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
6 | 5 | subgss 19044 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
8 | nelsubgcld.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
9 | 7, 8 | sseldd 3983 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
10 | nelsubgcld.p | . . . 4 ⊢ + = (+g‘𝐺) | |
11 | 5, 10 | grpcl 18864 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
12 | 1, 3, 9, 11 | syl3anc 1370 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
13 | 2 | eldifbd 3961 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) |
14 | eqid 2731 | . . . . . . 7 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
15 | 5, 10, 14 | grppncan 18951 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) = 𝑋) |
16 | 1, 3, 9, 15 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) = 𝑋) |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) = 𝑋) |
18 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
19 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | |
20 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → 𝑌 ∈ 𝑆) |
21 | 14 | subgsubcl 19054 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 + 𝑌) ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) ∈ 𝑆) |
22 | 18, 19, 20, 21 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) ∈ 𝑆) |
23 | 17, 22 | eqeltrrd 2833 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → 𝑋 ∈ 𝑆) |
24 | 13, 23 | mtand 813 | . 2 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑆) |
25 | 12, 24 | eldifd 3959 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∖ cdif 3945 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 Grpcgrp 18856 -gcsg 18858 SubGrpcsubg 19037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19040 |
This theorem is referenced by: nelsubgsubcld 41379 |
Copyright terms: Public domain | W3C validator |