![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubgcld | Structured version Visualization version GIF version |
Description: A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
Ref | Expression |
---|---|
nelsubginvcld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
nelsubginvcld.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
nelsubginvcld.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) |
nelsubginvcld.b | ⊢ 𝐵 = (Base‘𝐺) |
nelsubgcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
nelsubgcld.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
nelsubgcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelsubginvcld.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | nelsubginvcld.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) | |
3 | 2 | eldifad 3843 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
4 | nelsubginvcld.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
5 | nelsubginvcld.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
6 | 5 | subgss 18067 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
8 | nelsubgcld.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
9 | 7, 8 | sseldd 3861 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
10 | nelsubgcld.p | . . . 4 ⊢ + = (+g‘𝐺) | |
11 | 5, 10 | grpcl 17902 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
12 | 1, 3, 9, 11 | syl3anc 1351 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
13 | 2 | eldifbd 3844 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) |
14 | eqid 2778 | . . . . . . 7 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
15 | 5, 10, 14 | grppncan 17980 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) = 𝑋) |
16 | 1, 3, 9, 15 | syl3anc 1351 | . . . . 5 ⊢ (𝜑 → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) = 𝑋) |
17 | 16 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) = 𝑋) |
18 | 4 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
19 | simpr 477 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | |
20 | 8 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → 𝑌 ∈ 𝑆) |
21 | 14 | subgsubcl 18077 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 + 𝑌) ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) ∈ 𝑆) |
22 | 18, 19, 20, 21 | syl3anc 1351 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) ∈ 𝑆) |
23 | 17, 22 | eqeltrrd 2867 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → 𝑋 ∈ 𝑆) |
24 | 13, 23 | mtand 803 | . 2 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑆) |
25 | 12, 24 | eldifd 3842 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∖ cdif 3828 ⊆ wss 3831 ‘cfv 6190 (class class class)co 6978 Basecbs 16342 +gcplusg 16424 Grpcgrp 17894 -gcsg 17896 SubGrpcsubg 18060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 ax-pre-mulgt0 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-riota 6939 df-ov 6981 df-oprab 6982 df-mpo 6983 df-om 7399 df-1st 7503 df-2nd 7504 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-sub 10674 df-neg 10675 df-nn 11442 df-2 11506 df-ndx 16345 df-slot 16346 df-base 16348 df-sets 16349 df-ress 16350 df-plusg 16437 df-0g 16574 df-mgm 17713 df-sgrp 17755 df-mnd 17766 df-grp 17897 df-minusg 17898 df-sbg 17899 df-subg 18063 |
This theorem is referenced by: nelsubgsubcld 38575 |
Copyright terms: Public domain | W3C validator |