| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelsubgcld | Structured version Visualization version GIF version | ||
| Description: A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
| Ref | Expression |
|---|---|
| nelsubginvcld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| nelsubginvcld.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| nelsubginvcld.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) |
| nelsubginvcld.b | ⊢ 𝐵 = (Base‘𝐺) |
| nelsubgcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| nelsubgcld.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| nelsubgcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelsubginvcld.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | nelsubginvcld.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) | |
| 3 | 2 | eldifad 3938 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 4 | nelsubginvcld.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 5 | nelsubginvcld.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | 5 | subgss 19110 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 8 | nelsubgcld.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 9 | 7, 8 | sseldd 3959 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 10 | nelsubgcld.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 11 | 5, 10 | grpcl 18924 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 12 | 1, 3, 9, 11 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| 13 | 2 | eldifbd 3939 | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑆) |
| 14 | eqid 2735 | . . . . . . 7 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 15 | 5, 10, 14 | grppncan 19014 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) = 𝑋) |
| 16 | 1, 3, 9, 15 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) = 𝑋) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) = 𝑋) |
| 18 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 19 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | |
| 20 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → 𝑌 ∈ 𝑆) |
| 21 | 14 | subgsubcl 19120 | . . . . 5 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝑋 + 𝑌) ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) ∈ 𝑆) |
| 22 | 18, 19, 20, 21 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → ((𝑋 + 𝑌)(-g‘𝐺)𝑌) ∈ 𝑆) |
| 23 | 17, 22 | eqeltrrd 2835 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑆) → 𝑋 ∈ 𝑆) |
| 24 | 13, 23 | mtand 815 | . 2 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑆) |
| 25 | 12, 24 | eldifd 3937 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Grpcgrp 18916 -gcsg 18918 SubGrpcsubg 19103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 |
| This theorem is referenced by: nelsubgsubcld 42521 |
| Copyright terms: Public domain | W3C validator |