Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
2 | simpl 483 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
3 | 1, 2 | addcomd 11187 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
4 | addcl 10963 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
5 | subadd 11234 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
6 | 4, 1, 2, 5 | syl3anc 1370 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
7 | 3, 6 | mpbird 256 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 (class class class)co 7267 ℂcc 10879 + caddc 10884 − cmin 11215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-po 5498 df-so 5499 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-ltxr 11024 df-sub 11217 |
This theorem is referenced by: pncan2 11238 addsubass 11241 pncan3oi 11247 subid1 11251 nppcan2 11262 pncand 11343 nn1m1nn 12004 nnsub 12027 elnn0nn 12285 elz2 12347 zrevaddcl 12375 nzadd 12378 qrevaddcl 12721 irradd 12723 fzrev3 13332 elfzp1b 13343 fzrevral3 13353 fzval3 13466 seqf1olem1 13772 seqf1olem2 13773 bcp1nk 14041 bcp1m1 14044 bcpasc 14045 hashbclem 14174 ccatalpha 14308 wrdind 14445 wrd2ind 14446 2cshwcshw 14548 shftlem 14789 shftval5 14799 isershft 15385 isercoll2 15390 fsump1 15478 mptfzshft 15500 telfsumo 15524 fsumparts 15528 bcxmas 15557 isum1p 15563 geolim 15592 mertenslem2 15607 mertens 15608 fsumkthpow 15776 eftlub 15828 effsumlt 15830 eirrlem 15923 dvdsadd 16021 prmind2 16400 iserodd 16546 fldivp1 16608 prmpwdvds 16615 pockthlem 16616 prmreclem4 16630 prmreclem6 16632 4sqlem11 16666 vdwapun 16685 ramub1lem1 16737 ramcl 16740 efgsval2 19349 efgsrel 19350 shft2rab 24682 uniioombllem3 24759 uniioombllem4 24760 dvexp 25127 dvfsumlem1 25200 degltp1le 25248 ply1divex 25311 plyaddlem1 25384 plymullem1 25385 dvply1 25454 dvply2g 25455 vieta1lem2 25481 aaliou3lem7 25519 dvradcnv 25590 pserdvlem2 25597 abssinper 25687 advlogexp 25820 atantayl3 26099 leibpilem2 26101 emcllem2 26156 harmonicbnd4 26170 basellem8 26247 ppiprm 26310 ppinprm 26311 chtprm 26312 chtnprm 26313 chpp1 26314 chtub 26370 perfectlem1 26387 perfectlem2 26388 perfect 26389 bcp1ctr 26437 lgsvalmod 26474 lgseisen 26537 lgsquadlem1 26538 lgsquad2lem1 26542 2sqlem10 26586 rplogsumlem1 26642 selberg2lem 26708 logdivbnd 26714 pntrsumo1 26723 pntpbnd2 26745 clwwlkf1 28421 subfacp1lem5 33154 subfacp1lem6 33155 subfacval2 33157 subfaclim 33158 cvmliftlem7 33261 cvmliftlem10 33264 mblfinlem2 35823 itg2addnclem3 35838 fdc 35911 mettrifi 35923 heiborlem4 35980 heiborlem6 35982 lzenom 40600 2nn0ind 40775 jm2.17a 40790 jm2.17b 40791 jm2.17c 40792 evensumeven 45137 perfectALTVlem2 45152 perfectALTV 45153 |
Copyright terms: Public domain | W3C validator |