Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
2 | simpl 483 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
3 | 1, 2 | addcomd 11177 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
4 | addcl 10953 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
5 | subadd 11224 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
6 | 4, 1, 2, 5 | syl3anc 1370 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
7 | 3, 6 | mpbird 256 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 + caddc 10874 − cmin 11205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-sub 11207 |
This theorem is referenced by: pncan2 11228 addsubass 11231 pncan3oi 11237 subid1 11241 nppcan2 11252 pncand 11333 nn1m1nn 11994 nnsub 12017 elnn0nn 12275 elz2 12337 zrevaddcl 12365 nzadd 12368 qrevaddcl 12711 irradd 12713 fzrev3 13322 elfzp1b 13333 fzrevral3 13343 fzval3 13456 seqf1olem1 13762 seqf1olem2 13763 bcp1nk 14031 bcp1m1 14034 bcpasc 14035 hashbclem 14164 ccatalpha 14298 wrdind 14435 wrd2ind 14436 2cshwcshw 14538 shftlem 14779 shftval5 14789 isershft 15375 isercoll2 15380 fsump1 15468 mptfzshft 15490 telfsumo 15514 fsumparts 15518 bcxmas 15547 isum1p 15553 geolim 15582 mertenslem2 15597 mertens 15598 fsumkthpow 15766 eftlub 15818 effsumlt 15820 eirrlem 15913 dvdsadd 16011 prmind2 16390 iserodd 16536 fldivp1 16598 prmpwdvds 16605 pockthlem 16606 prmreclem4 16620 prmreclem6 16622 4sqlem11 16656 vdwapun 16675 ramub1lem1 16727 ramcl 16730 efgsval2 19339 efgsrel 19340 shft2rab 24672 uniioombllem3 24749 uniioombllem4 24750 dvexp 25117 dvfsumlem1 25190 degltp1le 25238 ply1divex 25301 plyaddlem1 25374 plymullem1 25375 dvply1 25444 dvply2g 25445 vieta1lem2 25471 aaliou3lem7 25509 dvradcnv 25580 pserdvlem2 25587 abssinper 25677 advlogexp 25810 atantayl3 26089 leibpilem2 26091 emcllem2 26146 harmonicbnd4 26160 basellem8 26237 ppiprm 26300 ppinprm 26301 chtprm 26302 chtnprm 26303 chpp1 26304 chtub 26360 perfectlem1 26377 perfectlem2 26378 perfect 26379 bcp1ctr 26427 lgsvalmod 26464 lgseisen 26527 lgsquadlem1 26528 lgsquad2lem1 26532 2sqlem10 26576 rplogsumlem1 26632 selberg2lem 26698 logdivbnd 26704 pntrsumo1 26713 pntpbnd2 26735 clwwlkf1 28413 subfacp1lem5 33146 subfacp1lem6 33147 subfacval2 33149 subfaclim 33150 cvmliftlem7 33253 cvmliftlem10 33256 mblfinlem2 35815 itg2addnclem3 35830 fdc 35903 mettrifi 35915 heiborlem4 35972 heiborlem6 35974 lzenom 40592 2nn0ind 40767 jm2.17a 40782 jm2.17b 40783 jm2.17c 40784 evensumeven 45159 perfectALTVlem2 45174 perfectALTV 45175 |
Copyright terms: Public domain | W3C validator |