![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
2 | simpl 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
3 | 1, 2 | addcomd 11413 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
4 | addcl 11189 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
5 | subadd 11460 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
6 | 4, 1, 2, 5 | syl3anc 1372 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
7 | 3, 6 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 (class class class)co 7406 ℂcc 11105 + caddc 11110 − cmin 11441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11247 df-mnf 11248 df-ltxr 11250 df-sub 11443 |
This theorem is referenced by: pncan2 11464 addsubass 11467 pncan3oi 11473 subid1 11477 nppcan2 11488 pncand 11569 nn1m1nn 12230 nnsub 12253 elnn0nn 12511 elz2 12573 zrevaddcl 12604 nzadd 12607 qrevaddcl 12952 irradd 12954 fzrev3 13564 elfzp1b 13575 fzrevral3 13585 fzval3 13698 seqf1olem1 14004 seqf1olem2 14005 bcp1nk 14274 bcp1m1 14277 bcpasc 14278 hashbclem 14408 ccatalpha 14540 wrdind 14669 wrd2ind 14670 2cshwcshw 14773 shftlem 15012 shftval5 15022 isershft 15607 isercoll2 15612 mptfzshft 15721 telfsumo 15745 fsumparts 15749 bcxmas 15778 isum1p 15784 geolim 15813 mertenslem2 15828 mertens 15829 fsumkthpow 15997 eftlub 16049 effsumlt 16051 eirrlem 16144 dvdsadd 16242 prmind2 16619 iserodd 16765 fldivp1 16827 prmpwdvds 16834 pockthlem 16835 prmreclem4 16849 prmreclem6 16851 4sqlem11 16885 vdwapun 16904 ramub1lem1 16956 ramcl 16959 efgsval2 19596 efgsrel 19597 shft2rab 25017 uniioombllem3 25094 uniioombllem4 25095 dvexp 25462 dvfsumlem1 25535 degltp1le 25583 ply1divex 25646 plyaddlem1 25719 plymullem1 25720 dvply1 25789 dvply2g 25790 vieta1lem2 25816 aaliou3lem7 25854 dvradcnv 25925 pserdvlem2 25932 abssinper 26022 advlogexp 26155 atantayl3 26434 leibpilem2 26436 emcllem2 26491 harmonicbnd4 26505 basellem8 26582 ppiprm 26645 ppinprm 26646 chtprm 26647 chtnprm 26648 chpp1 26649 chtub 26705 perfectlem1 26722 perfectlem2 26723 perfect 26724 bcp1ctr 26772 lgsvalmod 26809 lgseisen 26872 lgsquadlem1 26873 lgsquad2lem1 26877 2sqlem10 26921 rplogsumlem1 26977 selberg2lem 27043 logdivbnd 27049 pntrsumo1 27058 pntpbnd2 27080 clwwlkf1 29292 subfacp1lem5 34164 subfacp1lem6 34165 subfacval2 34167 subfaclim 34168 cvmliftlem7 34271 cvmliftlem10 34274 mblfinlem2 36515 itg2addnclem3 36530 fdc 36602 mettrifi 36614 heiborlem4 36671 heiborlem6 36673 lzenom 41494 2nn0ind 41670 jm2.17a 41685 jm2.17b 41686 jm2.17c 41687 evensumeven 46362 perfectALTVlem2 46377 perfectALTV 46378 |
Copyright terms: Public domain | W3C validator |