| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | addcomd 11324 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
| 4 | addcl 11097 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 5 | subadd 11372 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
| 6 | 4, 1, 2, 5 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
| 7 | 3, 6 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 (class class class)co 7354 ℂcc 11013 + caddc 11018 − cmin 11353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-ltxr 11160 df-sub 11355 |
| This theorem is referenced by: pncan2 11376 addsubass 11379 pncan3oi 11385 subid1 11390 nppcan2 11401 pncand 11482 nn1m1nn 12155 nnsub 12178 elnn0nn 12432 elz2 12495 zrevaddcl 12525 nzadd 12528 qrevaddcl 12873 irradd 12875 fzrev3 13494 elfzp1b 13505 fzrevral3 13518 fzval3 13638 seqf1olem1 13952 seqf1olem2 13953 bcp1nk 14228 bcp1m1 14231 bcpasc 14232 hashbclem 14363 ccatalpha 14505 wrdind 14633 wrd2ind 14634 2cshwcshw 14736 shftlem 14979 shftval5 14989 isershft 15575 isercoll2 15580 mptfzshft 15689 telfsumo 15713 fsumparts 15717 bcxmas 15746 isum1p 15752 geolim 15781 mertenslem2 15796 mertens 15797 fsumkthpow 15967 eftlub 16022 effsumlt 16024 eirrlem 16117 dvdsadd 16217 prmind2 16600 iserodd 16751 fldivp1 16813 prmpwdvds 16820 pockthlem 16821 prmreclem4 16835 prmreclem6 16837 4sqlem11 16871 vdwapun 16890 ramub1lem1 16942 ramcl 16945 efgsval2 19649 efgsrel 19650 shft2rab 25439 uniioombllem3 25516 uniioombllem4 25517 dvexp 25887 dvfsumlem1 25962 degltp1le 26008 ply1divex 26072 plyaddlem1 26148 plymullem1 26149 dvply1 26221 dvply2g 26222 dvply2gOLD 26223 vieta1lem2 26249 aaliou3lem7 26287 dvradcnv 26360 pserdvlem2 26368 abssinper 26460 advlogexp 26594 atantayl3 26879 leibpilem2 26881 emcllem2 26937 harmonicbnd4 26951 basellem8 27028 ppiprm 27091 ppinprm 27092 chtprm 27093 chtnprm 27094 chpp1 27095 chtub 27153 perfectlem1 27170 perfectlem2 27171 perfect 27172 bcp1ctr 27220 lgsvalmod 27257 lgseisen 27320 lgsquadlem1 27321 lgsquad2lem1 27325 2sqlem10 27369 rplogsumlem1 27425 selberg2lem 27491 logdivbnd 27497 pntrsumo1 27506 pntpbnd2 27528 clwwlkf1 30033 subfacp1lem5 35251 subfacp1lem6 35252 subfacval2 35254 subfaclim 35255 cvmliftlem7 35358 cvmliftlem10 35361 mblfinlem2 37721 itg2addnclem3 37736 fdc 37808 mettrifi 37820 heiborlem4 37877 heiborlem6 37879 lzenom 42890 2nn0ind 43065 jm2.17a 43080 jm2.17b 43081 jm2.17c 43082 evensumeven 47834 perfectALTVlem2 47849 perfectALTV 47850 |
| Copyright terms: Public domain | W3C validator |