![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
3 | 1, 2 | addcomd 11460 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
4 | addcl 11234 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
5 | subadd 11508 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
6 | 4, 1, 2, 5 | syl3anc 1370 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
7 | 3, 6 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 + caddc 11155 − cmin 11489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 df-sub 11491 |
This theorem is referenced by: pncan2 11512 addsubass 11515 pncan3oi 11521 subid1 11526 nppcan2 11537 pncand 11618 nn1m1nn 12284 nnsub 12307 elnn0nn 12565 elz2 12628 zrevaddcl 12659 nzadd 12662 qrevaddcl 13010 irradd 13012 fzrev3 13626 elfzp1b 13637 fzrevral3 13650 fzval3 13769 seqf1olem1 14078 seqf1olem2 14079 bcp1nk 14352 bcp1m1 14355 bcpasc 14356 hashbclem 14487 ccatalpha 14627 wrdind 14756 wrd2ind 14757 2cshwcshw 14860 shftlem 15103 shftval5 15113 isershft 15696 isercoll2 15701 mptfzshft 15810 telfsumo 15834 fsumparts 15838 bcxmas 15867 isum1p 15873 geolim 15902 mertenslem2 15917 mertens 15918 fsumkthpow 16088 eftlub 16141 effsumlt 16143 eirrlem 16236 dvdsadd 16335 prmind2 16718 iserodd 16868 fldivp1 16930 prmpwdvds 16937 pockthlem 16938 prmreclem4 16952 prmreclem6 16954 4sqlem11 16988 vdwapun 17007 ramub1lem1 17059 ramcl 17062 efgsval2 19765 efgsrel 19766 shft2rab 25556 uniioombllem3 25633 uniioombllem4 25634 dvexp 26005 dvfsumlem1 26080 degltp1le 26126 ply1divex 26190 plyaddlem1 26266 plymullem1 26267 dvply1 26339 dvply2g 26340 dvply2gOLD 26341 vieta1lem2 26367 aaliou3lem7 26405 dvradcnv 26478 pserdvlem2 26486 abssinper 26577 advlogexp 26711 atantayl3 26996 leibpilem2 26998 emcllem2 27054 harmonicbnd4 27068 basellem8 27145 ppiprm 27208 ppinprm 27209 chtprm 27210 chtnprm 27211 chpp1 27212 chtub 27270 perfectlem1 27287 perfectlem2 27288 perfect 27289 bcp1ctr 27337 lgsvalmod 27374 lgseisen 27437 lgsquadlem1 27438 lgsquad2lem1 27442 2sqlem10 27486 rplogsumlem1 27542 selberg2lem 27608 logdivbnd 27614 pntrsumo1 27623 pntpbnd2 27645 clwwlkf1 30077 subfacp1lem5 35168 subfacp1lem6 35169 subfacval2 35171 subfaclim 35172 cvmliftlem7 35275 cvmliftlem10 35278 mblfinlem2 37644 itg2addnclem3 37659 fdc 37731 mettrifi 37743 heiborlem4 37800 heiborlem6 37802 lzenom 42757 2nn0ind 42933 jm2.17a 42948 jm2.17b 42949 jm2.17c 42950 evensumeven 47631 perfectALTVlem2 47646 perfectALTV 47647 |
Copyright terms: Public domain | W3C validator |