| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | addcomd 11376 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
| 4 | addcl 11150 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 5 | subadd 11424 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
| 6 | 4, 1, 2, 5 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
| 7 | 3, 6 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 − cmin 11405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 |
| This theorem is referenced by: pncan2 11428 addsubass 11431 pncan3oi 11437 subid1 11442 nppcan2 11453 pncand 11534 nn1m1nn 12207 nnsub 12230 elnn0nn 12484 elz2 12547 zrevaddcl 12578 nzadd 12581 qrevaddcl 12930 irradd 12932 fzrev3 13551 elfzp1b 13562 fzrevral3 13575 fzval3 13695 seqf1olem1 14006 seqf1olem2 14007 bcp1nk 14282 bcp1m1 14285 bcpasc 14286 hashbclem 14417 ccatalpha 14558 wrdind 14687 wrd2ind 14688 2cshwcshw 14791 shftlem 15034 shftval5 15044 isershft 15630 isercoll2 15635 mptfzshft 15744 telfsumo 15768 fsumparts 15772 bcxmas 15801 isum1p 15807 geolim 15836 mertenslem2 15851 mertens 15852 fsumkthpow 16022 eftlub 16077 effsumlt 16079 eirrlem 16172 dvdsadd 16272 prmind2 16655 iserodd 16806 fldivp1 16868 prmpwdvds 16875 pockthlem 16876 prmreclem4 16890 prmreclem6 16892 4sqlem11 16926 vdwapun 16945 ramub1lem1 16997 ramcl 17000 efgsval2 19663 efgsrel 19664 shft2rab 25409 uniioombllem3 25486 uniioombllem4 25487 dvexp 25857 dvfsumlem1 25932 degltp1le 25978 ply1divex 26042 plyaddlem1 26118 plymullem1 26119 dvply1 26191 dvply2g 26192 dvply2gOLD 26193 vieta1lem2 26219 aaliou3lem7 26257 dvradcnv 26330 pserdvlem2 26338 abssinper 26430 advlogexp 26564 atantayl3 26849 leibpilem2 26851 emcllem2 26907 harmonicbnd4 26921 basellem8 26998 ppiprm 27061 ppinprm 27062 chtprm 27063 chtnprm 27064 chpp1 27065 chtub 27123 perfectlem1 27140 perfectlem2 27141 perfect 27142 bcp1ctr 27190 lgsvalmod 27227 lgseisen 27290 lgsquadlem1 27291 lgsquad2lem1 27295 2sqlem10 27339 rplogsumlem1 27395 selberg2lem 27461 logdivbnd 27467 pntrsumo1 27476 pntpbnd2 27498 clwwlkf1 29978 subfacp1lem5 35171 subfacp1lem6 35172 subfacval2 35174 subfaclim 35175 cvmliftlem7 35278 cvmliftlem10 35281 mblfinlem2 37652 itg2addnclem3 37667 fdc 37739 mettrifi 37751 heiborlem4 37808 heiborlem6 37810 lzenom 42758 2nn0ind 42934 jm2.17a 42949 jm2.17b 42950 jm2.17c 42951 evensumeven 47708 perfectALTVlem2 47723 perfectALTV 47724 |
| Copyright terms: Public domain | W3C validator |