| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | addcomd 11315 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
| 4 | addcl 11088 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 5 | subadd 11363 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
| 6 | 4, 1, 2, 5 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
| 7 | 3, 6 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 + caddc 11009 − cmin 11344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 |
| This theorem is referenced by: pncan2 11367 addsubass 11370 pncan3oi 11376 subid1 11381 nppcan2 11392 pncand 11473 nn1m1nn 12146 nnsub 12169 elnn0nn 12423 elz2 12486 zrevaddcl 12517 nzadd 12520 qrevaddcl 12869 irradd 12871 fzrev3 13490 elfzp1b 13501 fzrevral3 13514 fzval3 13634 seqf1olem1 13948 seqf1olem2 13949 bcp1nk 14224 bcp1m1 14227 bcpasc 14228 hashbclem 14359 ccatalpha 14501 wrdind 14629 wrd2ind 14630 2cshwcshw 14732 shftlem 14975 shftval5 14985 isershft 15571 isercoll2 15576 mptfzshft 15685 telfsumo 15709 fsumparts 15713 bcxmas 15742 isum1p 15748 geolim 15777 mertenslem2 15792 mertens 15793 fsumkthpow 15963 eftlub 16018 effsumlt 16020 eirrlem 16113 dvdsadd 16213 prmind2 16596 iserodd 16747 fldivp1 16809 prmpwdvds 16816 pockthlem 16817 prmreclem4 16831 prmreclem6 16833 4sqlem11 16867 vdwapun 16886 ramub1lem1 16938 ramcl 16941 efgsval2 19646 efgsrel 19647 shft2rab 25437 uniioombllem3 25514 uniioombllem4 25515 dvexp 25885 dvfsumlem1 25960 degltp1le 26006 ply1divex 26070 plyaddlem1 26146 plymullem1 26147 dvply1 26219 dvply2g 26220 dvply2gOLD 26221 vieta1lem2 26247 aaliou3lem7 26285 dvradcnv 26358 pserdvlem2 26366 abssinper 26458 advlogexp 26592 atantayl3 26877 leibpilem2 26879 emcllem2 26935 harmonicbnd4 26949 basellem8 27026 ppiprm 27089 ppinprm 27090 chtprm 27091 chtnprm 27092 chpp1 27093 chtub 27151 perfectlem1 27168 perfectlem2 27169 perfect 27170 bcp1ctr 27218 lgsvalmod 27255 lgseisen 27318 lgsquadlem1 27319 lgsquad2lem1 27323 2sqlem10 27367 rplogsumlem1 27423 selberg2lem 27489 logdivbnd 27495 pntrsumo1 27504 pntpbnd2 27526 clwwlkf1 30027 subfacp1lem5 35226 subfacp1lem6 35227 subfacval2 35229 subfaclim 35230 cvmliftlem7 35333 cvmliftlem10 35336 mblfinlem2 37704 itg2addnclem3 37719 fdc 37791 mettrifi 37803 heiborlem4 37860 heiborlem6 37862 lzenom 42809 2nn0ind 42984 jm2.17a 42999 jm2.17b 43000 jm2.17c 43001 evensumeven 47744 perfectALTVlem2 47759 perfectALTV 47760 |
| Copyright terms: Public domain | W3C validator |