![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
3 | 1, 2 | addcomd 11492 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
4 | addcl 11266 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
5 | subadd 11539 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
6 | 4, 1, 2, 5 | syl3anc 1371 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
7 | 3, 6 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 + caddc 11187 − cmin 11520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 |
This theorem is referenced by: pncan2 11543 addsubass 11546 pncan3oi 11552 subid1 11556 nppcan2 11567 pncand 11648 nn1m1nn 12314 nnsub 12337 elnn0nn 12595 elz2 12657 zrevaddcl 12688 nzadd 12691 qrevaddcl 13036 irradd 13038 fzrev3 13650 elfzp1b 13661 fzrevral3 13671 fzval3 13785 seqf1olem1 14092 seqf1olem2 14093 bcp1nk 14366 bcp1m1 14369 bcpasc 14370 hashbclem 14501 ccatalpha 14641 wrdind 14770 wrd2ind 14771 2cshwcshw 14874 shftlem 15117 shftval5 15127 isershft 15712 isercoll2 15717 mptfzshft 15826 telfsumo 15850 fsumparts 15854 bcxmas 15883 isum1p 15889 geolim 15918 mertenslem2 15933 mertens 15934 fsumkthpow 16104 eftlub 16157 effsumlt 16159 eirrlem 16252 dvdsadd 16350 prmind2 16732 iserodd 16882 fldivp1 16944 prmpwdvds 16951 pockthlem 16952 prmreclem4 16966 prmreclem6 16968 4sqlem11 17002 vdwapun 17021 ramub1lem1 17073 ramcl 17076 efgsval2 19775 efgsrel 19776 shft2rab 25562 uniioombllem3 25639 uniioombllem4 25640 dvexp 26011 dvfsumlem1 26086 degltp1le 26132 ply1divex 26196 plyaddlem1 26272 plymullem1 26273 dvply1 26343 dvply2g 26344 dvply2gOLD 26345 vieta1lem2 26371 aaliou3lem7 26409 dvradcnv 26482 pserdvlem2 26490 abssinper 26581 advlogexp 26715 atantayl3 27000 leibpilem2 27002 emcllem2 27058 harmonicbnd4 27072 basellem8 27149 ppiprm 27212 ppinprm 27213 chtprm 27214 chtnprm 27215 chpp1 27216 chtub 27274 perfectlem1 27291 perfectlem2 27292 perfect 27293 bcp1ctr 27341 lgsvalmod 27378 lgseisen 27441 lgsquadlem1 27442 lgsquad2lem1 27446 2sqlem10 27490 rplogsumlem1 27546 selberg2lem 27612 logdivbnd 27618 pntrsumo1 27627 pntpbnd2 27649 clwwlkf1 30081 subfacp1lem5 35152 subfacp1lem6 35153 subfacval2 35155 subfaclim 35156 cvmliftlem7 35259 cvmliftlem10 35262 mblfinlem2 37618 itg2addnclem3 37633 fdc 37705 mettrifi 37717 heiborlem4 37774 heiborlem6 37776 lzenom 42726 2nn0ind 42902 jm2.17a 42917 jm2.17b 42918 jm2.17c 42919 evensumeven 47581 perfectALTVlem2 47596 perfectALTV 47597 |
Copyright terms: Public domain | W3C validator |