![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
2 | simpl 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
3 | 1, 2 | addcomd 11416 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
4 | addcl 11192 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
5 | subadd 11463 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
6 | 4, 1, 2, 5 | syl3anc 1372 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
7 | 3, 6 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 (class class class)co 7409 ℂcc 11108 + caddc 11113 − cmin 11444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 |
This theorem is referenced by: pncan2 11467 addsubass 11470 pncan3oi 11476 subid1 11480 nppcan2 11491 pncand 11572 nn1m1nn 12233 nnsub 12256 elnn0nn 12514 elz2 12576 zrevaddcl 12607 nzadd 12610 qrevaddcl 12955 irradd 12957 fzrev3 13567 elfzp1b 13578 fzrevral3 13588 fzval3 13701 seqf1olem1 14007 seqf1olem2 14008 bcp1nk 14277 bcp1m1 14280 bcpasc 14281 hashbclem 14411 ccatalpha 14543 wrdind 14672 wrd2ind 14673 2cshwcshw 14776 shftlem 15015 shftval5 15025 isershft 15610 isercoll2 15615 mptfzshft 15724 telfsumo 15748 fsumparts 15752 bcxmas 15781 isum1p 15787 geolim 15816 mertenslem2 15831 mertens 15832 fsumkthpow 16000 eftlub 16052 effsumlt 16054 eirrlem 16147 dvdsadd 16245 prmind2 16622 iserodd 16768 fldivp1 16830 prmpwdvds 16837 pockthlem 16838 prmreclem4 16852 prmreclem6 16854 4sqlem11 16888 vdwapun 16907 ramub1lem1 16959 ramcl 16962 efgsval2 19601 efgsrel 19602 shft2rab 25025 uniioombllem3 25102 uniioombllem4 25103 dvexp 25470 dvfsumlem1 25543 degltp1le 25591 ply1divex 25654 plyaddlem1 25727 plymullem1 25728 dvply1 25797 dvply2g 25798 vieta1lem2 25824 aaliou3lem7 25862 dvradcnv 25933 pserdvlem2 25940 abssinper 26030 advlogexp 26163 atantayl3 26444 leibpilem2 26446 emcllem2 26501 harmonicbnd4 26515 basellem8 26592 ppiprm 26655 ppinprm 26656 chtprm 26657 chtnprm 26658 chpp1 26659 chtub 26715 perfectlem1 26732 perfectlem2 26733 perfect 26734 bcp1ctr 26782 lgsvalmod 26819 lgseisen 26882 lgsquadlem1 26883 lgsquad2lem1 26887 2sqlem10 26931 rplogsumlem1 26987 selberg2lem 27053 logdivbnd 27059 pntrsumo1 27068 pntpbnd2 27090 clwwlkf1 29302 subfacp1lem5 34175 subfacp1lem6 34176 subfacval2 34178 subfaclim 34179 cvmliftlem7 34282 cvmliftlem10 34285 mblfinlem2 36526 itg2addnclem3 36541 fdc 36613 mettrifi 36625 heiborlem4 36682 heiborlem6 36684 lzenom 41508 2nn0ind 41684 jm2.17a 41699 jm2.17b 41700 jm2.17c 41701 evensumeven 46375 perfectALTVlem2 46390 perfectALTV 46391 |
Copyright terms: Public domain | W3C validator |