| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | addcomd 11336 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
| 4 | addcl 11110 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 5 | subadd 11384 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
| 6 | 4, 1, 2, 5 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
| 7 | 3, 6 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 + caddc 11031 − cmin 11365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 |
| This theorem is referenced by: pncan2 11388 addsubass 11391 pncan3oi 11397 subid1 11402 nppcan2 11413 pncand 11494 nn1m1nn 12167 nnsub 12190 elnn0nn 12444 elz2 12507 zrevaddcl 12538 nzadd 12541 qrevaddcl 12890 irradd 12892 fzrev3 13511 elfzp1b 13522 fzrevral3 13535 fzval3 13655 seqf1olem1 13966 seqf1olem2 13967 bcp1nk 14242 bcp1m1 14245 bcpasc 14246 hashbclem 14377 ccatalpha 14518 wrdind 14646 wrd2ind 14647 2cshwcshw 14750 shftlem 14993 shftval5 15003 isershft 15589 isercoll2 15594 mptfzshft 15703 telfsumo 15727 fsumparts 15731 bcxmas 15760 isum1p 15766 geolim 15795 mertenslem2 15810 mertens 15811 fsumkthpow 15981 eftlub 16036 effsumlt 16038 eirrlem 16131 dvdsadd 16231 prmind2 16614 iserodd 16765 fldivp1 16827 prmpwdvds 16834 pockthlem 16835 prmreclem4 16849 prmreclem6 16851 4sqlem11 16885 vdwapun 16904 ramub1lem1 16956 ramcl 16959 efgsval2 19630 efgsrel 19631 shft2rab 25425 uniioombllem3 25502 uniioombllem4 25503 dvexp 25873 dvfsumlem1 25948 degltp1le 25994 ply1divex 26058 plyaddlem1 26134 plymullem1 26135 dvply1 26207 dvply2g 26208 dvply2gOLD 26209 vieta1lem2 26235 aaliou3lem7 26273 dvradcnv 26346 pserdvlem2 26354 abssinper 26446 advlogexp 26580 atantayl3 26865 leibpilem2 26867 emcllem2 26923 harmonicbnd4 26937 basellem8 27014 ppiprm 27077 ppinprm 27078 chtprm 27079 chtnprm 27080 chpp1 27081 chtub 27139 perfectlem1 27156 perfectlem2 27157 perfect 27158 bcp1ctr 27206 lgsvalmod 27243 lgseisen 27306 lgsquadlem1 27307 lgsquad2lem1 27311 2sqlem10 27355 rplogsumlem1 27411 selberg2lem 27477 logdivbnd 27483 pntrsumo1 27492 pntpbnd2 27514 clwwlkf1 30011 subfacp1lem5 35159 subfacp1lem6 35160 subfacval2 35162 subfaclim 35163 cvmliftlem7 35266 cvmliftlem10 35269 mblfinlem2 37640 itg2addnclem3 37655 fdc 37727 mettrifi 37739 heiborlem4 37796 heiborlem6 37798 lzenom 42746 2nn0ind 42921 jm2.17a 42936 jm2.17b 42937 jm2.17c 42938 evensumeven 47695 perfectALTVlem2 47710 perfectALTV 47711 |
| Copyright terms: Public domain | W3C validator |