| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | addcomd 11464 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
| 4 | addcl 11238 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 5 | subadd 11512 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
| 6 | 4, 1, 2, 5 | syl3anc 1372 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
| 7 | 3, 6 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7432 ℂcc 11154 + caddc 11159 − cmin 11493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-ltxr 11301 df-sub 11495 |
| This theorem is referenced by: pncan2 11516 addsubass 11519 pncan3oi 11525 subid1 11530 nppcan2 11541 pncand 11622 nn1m1nn 12288 nnsub 12311 elnn0nn 12570 elz2 12633 zrevaddcl 12664 nzadd 12667 qrevaddcl 13014 irradd 13016 fzrev3 13631 elfzp1b 13642 fzrevral3 13655 fzval3 13774 seqf1olem1 14083 seqf1olem2 14084 bcp1nk 14357 bcp1m1 14360 bcpasc 14361 hashbclem 14492 ccatalpha 14632 wrdind 14761 wrd2ind 14762 2cshwcshw 14865 shftlem 15108 shftval5 15118 isershft 15701 isercoll2 15706 mptfzshft 15815 telfsumo 15839 fsumparts 15843 bcxmas 15872 isum1p 15878 geolim 15907 mertenslem2 15922 mertens 15923 fsumkthpow 16093 eftlub 16146 effsumlt 16148 eirrlem 16241 dvdsadd 16340 prmind2 16723 iserodd 16874 fldivp1 16936 prmpwdvds 16943 pockthlem 16944 prmreclem4 16958 prmreclem6 16960 4sqlem11 16994 vdwapun 17013 ramub1lem1 17065 ramcl 17068 efgsval2 19752 efgsrel 19753 shft2rab 25544 uniioombllem3 25621 uniioombllem4 25622 dvexp 25992 dvfsumlem1 26067 degltp1le 26113 ply1divex 26177 plyaddlem1 26253 plymullem1 26254 dvply1 26326 dvply2g 26327 dvply2gOLD 26328 vieta1lem2 26354 aaliou3lem7 26392 dvradcnv 26465 pserdvlem2 26473 abssinper 26564 advlogexp 26698 atantayl3 26983 leibpilem2 26985 emcllem2 27041 harmonicbnd4 27055 basellem8 27132 ppiprm 27195 ppinprm 27196 chtprm 27197 chtnprm 27198 chpp1 27199 chtub 27257 perfectlem1 27274 perfectlem2 27275 perfect 27276 bcp1ctr 27324 lgsvalmod 27361 lgseisen 27424 lgsquadlem1 27425 lgsquad2lem1 27429 2sqlem10 27473 rplogsumlem1 27529 selberg2lem 27595 logdivbnd 27601 pntrsumo1 27610 pntpbnd2 27632 clwwlkf1 30069 subfacp1lem5 35190 subfacp1lem6 35191 subfacval2 35193 subfaclim 35194 cvmliftlem7 35297 cvmliftlem10 35300 mblfinlem2 37666 itg2addnclem3 37681 fdc 37753 mettrifi 37765 heiborlem4 37822 heiborlem6 37824 lzenom 42786 2nn0ind 42962 jm2.17a 42977 jm2.17b 42978 jm2.17c 42979 evensumeven 47699 perfectALTVlem2 47714 perfectALTV 47715 |
| Copyright terms: Public domain | W3C validator |