| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | addcomd 11442 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
| 4 | addcl 11216 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 5 | subadd 11490 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
| 6 | 4, 1, 2, 5 | syl3anc 1373 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
| 7 | 3, 6 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 + caddc 11137 − cmin 11471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 |
| This theorem is referenced by: pncan2 11494 addsubass 11497 pncan3oi 11503 subid1 11508 nppcan2 11519 pncand 11600 nn1m1nn 12266 nnsub 12289 elnn0nn 12548 elz2 12611 zrevaddcl 12642 nzadd 12645 qrevaddcl 12992 irradd 12994 fzrev3 13612 elfzp1b 13623 fzrevral3 13636 fzval3 13755 seqf1olem1 14064 seqf1olem2 14065 bcp1nk 14340 bcp1m1 14343 bcpasc 14344 hashbclem 14475 ccatalpha 14616 wrdind 14745 wrd2ind 14746 2cshwcshw 14849 shftlem 15092 shftval5 15102 isershft 15685 isercoll2 15690 mptfzshft 15799 telfsumo 15823 fsumparts 15827 bcxmas 15856 isum1p 15862 geolim 15891 mertenslem2 15906 mertens 15907 fsumkthpow 16077 eftlub 16132 effsumlt 16134 eirrlem 16227 dvdsadd 16326 prmind2 16709 iserodd 16860 fldivp1 16922 prmpwdvds 16929 pockthlem 16930 prmreclem4 16944 prmreclem6 16946 4sqlem11 16980 vdwapun 16999 ramub1lem1 17051 ramcl 17054 efgsval2 19719 efgsrel 19720 shft2rab 25466 uniioombllem3 25543 uniioombllem4 25544 dvexp 25914 dvfsumlem1 25989 degltp1le 26035 ply1divex 26099 plyaddlem1 26175 plymullem1 26176 dvply1 26248 dvply2g 26249 dvply2gOLD 26250 vieta1lem2 26276 aaliou3lem7 26314 dvradcnv 26387 pserdvlem2 26395 abssinper 26487 advlogexp 26621 atantayl3 26906 leibpilem2 26908 emcllem2 26964 harmonicbnd4 26978 basellem8 27055 ppiprm 27118 ppinprm 27119 chtprm 27120 chtnprm 27121 chpp1 27122 chtub 27180 perfectlem1 27197 perfectlem2 27198 perfect 27199 bcp1ctr 27247 lgsvalmod 27284 lgseisen 27347 lgsquadlem1 27348 lgsquad2lem1 27352 2sqlem10 27396 rplogsumlem1 27452 selberg2lem 27518 logdivbnd 27524 pntrsumo1 27533 pntpbnd2 27555 clwwlkf1 30035 subfacp1lem5 35211 subfacp1lem6 35212 subfacval2 35214 subfaclim 35215 cvmliftlem7 35318 cvmliftlem10 35321 mblfinlem2 37687 itg2addnclem3 37702 fdc 37774 mettrifi 37786 heiborlem4 37843 heiborlem6 37845 lzenom 42768 2nn0ind 42944 jm2.17a 42959 jm2.17b 42960 jm2.17c 42961 evensumeven 47701 perfectALTVlem2 47716 perfectALTV 47717 |
| Copyright terms: Public domain | W3C validator |