Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
3 | 1, 2 | addcomd 11107 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
4 | addcl 10884 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
5 | subadd 11154 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
6 | 4, 1, 2, 5 | syl3anc 1369 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
7 | 3, 6 | mpbird 256 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 − cmin 11135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 |
This theorem is referenced by: pncan2 11158 addsubass 11161 pncan3oi 11167 subid1 11171 nppcan2 11182 pncand 11263 nn1m1nn 11924 nnsub 11947 elnn0nn 12205 elz2 12267 zrevaddcl 12295 nzadd 12298 qrevaddcl 12640 irradd 12642 fzrev3 13251 elfzp1b 13262 fzrevral3 13272 fzval3 13384 seqf1olem1 13690 seqf1olem2 13691 bcp1nk 13959 bcp1m1 13962 bcpasc 13963 hashbclem 14092 ccatalpha 14226 wrdind 14363 wrd2ind 14364 2cshwcshw 14466 shftlem 14707 shftval5 14717 isershft 15303 isercoll2 15308 fsump1 15396 mptfzshft 15418 telfsumo 15442 fsumparts 15446 bcxmas 15475 isum1p 15481 geolim 15510 mertenslem2 15525 mertens 15526 fsumkthpow 15694 eftlub 15746 effsumlt 15748 eirrlem 15841 dvdsadd 15939 prmind2 16318 iserodd 16464 fldivp1 16526 prmpwdvds 16533 pockthlem 16534 prmreclem4 16548 prmreclem6 16550 4sqlem11 16584 vdwapun 16603 ramub1lem1 16655 ramcl 16658 efgsval2 19254 efgsrel 19255 shft2rab 24577 uniioombllem3 24654 uniioombllem4 24655 dvexp 25022 dvfsumlem1 25095 degltp1le 25143 ply1divex 25206 plyaddlem1 25279 plymullem1 25280 dvply1 25349 dvply2g 25350 vieta1lem2 25376 aaliou3lem7 25414 dvradcnv 25485 pserdvlem2 25492 abssinper 25582 advlogexp 25715 atantayl3 25994 leibpilem2 25996 emcllem2 26051 harmonicbnd4 26065 basellem8 26142 ppiprm 26205 ppinprm 26206 chtprm 26207 chtnprm 26208 chpp1 26209 chtub 26265 perfectlem1 26282 perfectlem2 26283 perfect 26284 bcp1ctr 26332 lgsvalmod 26369 lgseisen 26432 lgsquadlem1 26433 lgsquad2lem1 26437 2sqlem10 26481 rplogsumlem1 26537 selberg2lem 26603 logdivbnd 26609 pntrsumo1 26618 pntpbnd2 26640 clwwlkf1 28314 subfacp1lem5 33046 subfacp1lem6 33047 subfacval2 33049 subfaclim 33050 cvmliftlem7 33153 cvmliftlem10 33156 mblfinlem2 35742 itg2addnclem3 35757 fdc 35830 mettrifi 35842 heiborlem4 35899 heiborlem6 35901 lzenom 40508 2nn0ind 40683 jm2.17a 40698 jm2.17b 40699 jm2.17c 40700 evensumeven 45047 perfectALTVlem2 45062 perfectALTV 45063 |
Copyright terms: Public domain | W3C validator |