MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvtrivd Structured version   Visualization version   GIF version

Theorem abvtrivd 19533
Description: The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
abvtriv.a 𝐴 = (AbsVal‘𝑅)
abvtriv.b 𝐵 = (Base‘𝑅)
abvtriv.z 0 = (0g𝑅)
abvtriv.f 𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
abvtrivd.1 · = (.r𝑅)
abvtrivd.2 (𝜑𝑅 ∈ Ring)
abvtrivd.3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ≠ 0 )
Assertion
Ref Expression
abvtrivd (𝜑𝐹𝐴)
Distinct variable groups:   𝑥, 0   𝑦,𝑧,𝐹   𝑥,𝑦,𝑧,𝜑   𝑥,𝑅,𝑦,𝑧   𝑥, ·   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑦,𝑧)   · (𝑦,𝑧)   𝐹(𝑥)   0 (𝑦,𝑧)

Proof of Theorem abvtrivd
StepHypRef Expression
1 abvtriv.a . . 3 𝐴 = (AbsVal‘𝑅)
21a1i 11 . 2 (𝜑𝐴 = (AbsVal‘𝑅))
3 abvtriv.b . . 3 𝐵 = (Base‘𝑅)
43a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
5 eqidd 2825 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
6 abvtrivd.1 . . 3 · = (.r𝑅)
76a1i 11 . 2 (𝜑· = (.r𝑅))
8 abvtriv.z . . 3 0 = (0g𝑅)
98a1i 11 . 2 (𝜑0 = (0g𝑅))
10 abvtrivd.2 . 2 (𝜑𝑅 ∈ Ring)
11 0re 10635 . . . . 5 0 ∈ ℝ
12 1re 10633 . . . . 5 1 ∈ ℝ
1311, 12ifcli 4515 . . . 4 if(𝑥 = 0 , 0, 1) ∈ ℝ
1413a1i 11 . . 3 ((𝜑𝑥𝐵) → if(𝑥 = 0 , 0, 1) ∈ ℝ)
15 abvtriv.f . . 3 𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
1614, 15fmptd 6873 . 2 (𝜑𝐹:𝐵⟶ℝ)
173, 8ring0cl 19241 . . 3 (𝑅 ∈ Ring → 0𝐵)
18 iftrue 4475 . . . 4 (𝑥 = 0 → if(𝑥 = 0 , 0, 1) = 0)
19 c0ex 10627 . . . 4 0 ∈ V
2018, 15, 19fvmpt 6764 . . 3 ( 0𝐵 → (𝐹0 ) = 0)
2110, 17, 203syl 18 . 2 (𝜑 → (𝐹0 ) = 0)
22 0lt1 11154 . . 3 0 < 1
23 eqeq1 2828 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 0𝑦 = 0 ))
2423ifbid 4491 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 = 0 , 0, 1) = if(𝑦 = 0 , 0, 1))
25 1ex 10629 . . . . . . 7 1 ∈ V
2619, 25ifex 4517 . . . . . 6 if(𝑦 = 0 , 0, 1) ∈ V
2724, 15, 26fvmpt 6764 . . . . 5 (𝑦𝐵 → (𝐹𝑦) = if(𝑦 = 0 , 0, 1))
28 ifnefalse 4481 . . . . 5 (𝑦0 → if(𝑦 = 0 , 0, 1) = 1)
2927, 28sylan9eq 2880 . . . 4 ((𝑦𝐵𝑦0 ) → (𝐹𝑦) = 1)
30293adant1 1124 . . 3 ((𝜑𝑦𝐵𝑦0 ) → (𝐹𝑦) = 1)
3122, 30breqtrrid 5100 . 2 ((𝜑𝑦𝐵𝑦0 ) → 0 < (𝐹𝑦))
32 1t1e1 11791 . . . 4 (1 · 1) = 1
3332eqcomi 2833 . . 3 1 = (1 · 1)
34103ad2ant1 1127 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑅 ∈ Ring)
35 simp2l 1193 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑦𝐵)
36 simp3l 1195 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑧𝐵)
373, 6ringcl 19233 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦 · 𝑧) ∈ 𝐵)
3834, 35, 36, 37syl3anc 1365 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ∈ 𝐵)
39 eqeq1 2828 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑥 = 0 ↔ (𝑦 · 𝑧) = 0 ))
4039ifbid 4491 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → if(𝑥 = 0 , 0, 1) = if((𝑦 · 𝑧) = 0 , 0, 1))
4119, 25ifex 4517 . . . . . 6 if((𝑦 · 𝑧) = 0 , 0, 1) ∈ V
4240, 15, 41fvmpt 6764 . . . . 5 ((𝑦 · 𝑧) ∈ 𝐵 → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0 , 0, 1))
4338, 42syl 17 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0 , 0, 1))
44 abvtrivd.3 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ≠ 0 )
4544neneqd 3025 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ (𝑦 · 𝑧) = 0 )
4645iffalsed 4480 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if((𝑦 · 𝑧) = 0 , 0, 1) = 1)
4743, 46eqtrd 2860 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = 1)
4835, 27syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑦) = if(𝑦 = 0 , 0, 1))
49 simp2r 1194 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑦0 )
5049neneqd 3025 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ 𝑦 = 0 )
5150iffalsed 4480 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if(𝑦 = 0 , 0, 1) = 1)
5248, 51eqtrd 2860 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑦) = 1)
53 eqeq1 2828 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 0𝑧 = 0 ))
5453ifbid 4491 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 0 , 0, 1) = if(𝑧 = 0 , 0, 1))
5519, 25ifex 4517 . . . . . . 7 if(𝑧 = 0 , 0, 1) ∈ V
5654, 15, 55fvmpt 6764 . . . . . 6 (𝑧𝐵 → (𝐹𝑧) = if(𝑧 = 0 , 0, 1))
5736, 56syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑧) = if(𝑧 = 0 , 0, 1))
58 simp3r 1196 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑧0 )
5958neneqd 3025 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ 𝑧 = 0 )
6059iffalsed 4480 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if(𝑧 = 0 , 0, 1) = 1)
6157, 60eqtrd 2860 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑧) = 1)
6252, 61oveq12d 7169 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ((𝐹𝑦) · (𝐹𝑧)) = (1 · 1))
6333, 47, 623eqtr4a 2886 . 2 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
64 breq1 5065 . . . . . 6 (0 = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) → (0 ≤ 2 ↔ if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2))
65 breq1 5065 . . . . . 6 (1 = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) → (1 ≤ 2 ↔ if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2))
66 0le2 11731 . . . . . 6 0 ≤ 2
67 1le2 11838 . . . . . 6 1 ≤ 2
6864, 65, 66, 67keephyp 4538 . . . . 5 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2
69 df-2 11692 . . . . 5 2 = (1 + 1)
7068, 69breqtri 5087 . . . 4 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ (1 + 1)
7170a1i 11 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ (1 + 1))
72 ringgrp 19224 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
7310, 72syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
74733ad2ant1 1127 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑅 ∈ Grp)
75 eqid 2824 . . . . . 6 (+g𝑅) = (+g𝑅)
763, 75grpcl 18043 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
7774, 35, 36, 76syl3anc 1365 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
78 eqeq1 2828 . . . . . 6 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑥 = 0 ↔ (𝑦(+g𝑅)𝑧) = 0 ))
7978ifbid 4491 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → if(𝑥 = 0 , 0, 1) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8019, 25ifex 4517 . . . . 5 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ∈ V
8179, 15, 80fvmpt 6764 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → (𝐹‘(𝑦(+g𝑅)𝑧)) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8277, 81syl 17 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦(+g𝑅)𝑧)) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8352, 61oveq12d 7169 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ((𝐹𝑦) + (𝐹𝑧)) = (1 + 1))
8471, 82, 833brtr4d 5094 . 2 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
852, 4, 5, 7, 9, 10, 16, 21, 31, 63, 84isabvd 19513 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2106  wne 3020  ifcif 4469   class class class wbr 5062  cmpt 5142  cfv 6351  (class class class)co 7151  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  2c2 11684  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  Grpcgrp 18035  Ringcrg 19219  AbsValcabv 19509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-ico 12737  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-grp 18038  df-minusg 18039  df-mgp 19162  df-ring 19221  df-abv 19510
This theorem is referenced by:  abvtriv  19534  abvn0b  19996
  Copyright terms: Public domain W3C validator