MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvtrivd Structured version   Visualization version   GIF version

Theorem abvtrivd 19604
Description: The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
abvtriv.a 𝐴 = (AbsVal‘𝑅)
abvtriv.b 𝐵 = (Base‘𝑅)
abvtriv.z 0 = (0g𝑅)
abvtriv.f 𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
abvtrivd.1 · = (.r𝑅)
abvtrivd.2 (𝜑𝑅 ∈ Ring)
abvtrivd.3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ≠ 0 )
Assertion
Ref Expression
abvtrivd (𝜑𝐹𝐴)
Distinct variable groups:   𝑥, 0   𝑦,𝑧,𝐹   𝑥,𝑦,𝑧,𝜑   𝑥,𝑅,𝑦,𝑧   𝑥, ·   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑦,𝑧)   · (𝑦,𝑧)   𝐹(𝑥)   0 (𝑦,𝑧)

Proof of Theorem abvtrivd
StepHypRef Expression
1 abvtriv.a . . 3 𝐴 = (AbsVal‘𝑅)
21a1i 11 . 2 (𝜑𝐴 = (AbsVal‘𝑅))
3 abvtriv.b . . 3 𝐵 = (Base‘𝑅)
43a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
5 eqidd 2799 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
6 abvtrivd.1 . . 3 · = (.r𝑅)
76a1i 11 . 2 (𝜑· = (.r𝑅))
8 abvtriv.z . . 3 0 = (0g𝑅)
98a1i 11 . 2 (𝜑0 = (0g𝑅))
10 abvtrivd.2 . 2 (𝜑𝑅 ∈ Ring)
11 0re 10632 . . . . 5 0 ∈ ℝ
12 1re 10630 . . . . 5 1 ∈ ℝ
1311, 12ifcli 4471 . . . 4 if(𝑥 = 0 , 0, 1) ∈ ℝ
1413a1i 11 . . 3 ((𝜑𝑥𝐵) → if(𝑥 = 0 , 0, 1) ∈ ℝ)
15 abvtriv.f . . 3 𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
1614, 15fmptd 6855 . 2 (𝜑𝐹:𝐵⟶ℝ)
173, 8ring0cl 19315 . . 3 (𝑅 ∈ Ring → 0𝐵)
18 iftrue 4431 . . . 4 (𝑥 = 0 → if(𝑥 = 0 , 0, 1) = 0)
19 c0ex 10624 . . . 4 0 ∈ V
2018, 15, 19fvmpt 6745 . . 3 ( 0𝐵 → (𝐹0 ) = 0)
2110, 17, 203syl 18 . 2 (𝜑 → (𝐹0 ) = 0)
22 0lt1 11151 . . 3 0 < 1
23 eqeq1 2802 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 0𝑦 = 0 ))
2423ifbid 4447 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 = 0 , 0, 1) = if(𝑦 = 0 , 0, 1))
25 1ex 10626 . . . . . . 7 1 ∈ V
2619, 25ifex 4473 . . . . . 6 if(𝑦 = 0 , 0, 1) ∈ V
2724, 15, 26fvmpt 6745 . . . . 5 (𝑦𝐵 → (𝐹𝑦) = if(𝑦 = 0 , 0, 1))
28 ifnefalse 4437 . . . . 5 (𝑦0 → if(𝑦 = 0 , 0, 1) = 1)
2927, 28sylan9eq 2853 . . . 4 ((𝑦𝐵𝑦0 ) → (𝐹𝑦) = 1)
30293adant1 1127 . . 3 ((𝜑𝑦𝐵𝑦0 ) → (𝐹𝑦) = 1)
3122, 30breqtrrid 5068 . 2 ((𝜑𝑦𝐵𝑦0 ) → 0 < (𝐹𝑦))
32 1t1e1 11787 . . . 4 (1 · 1) = 1
3332eqcomi 2807 . . 3 1 = (1 · 1)
34103ad2ant1 1130 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑅 ∈ Ring)
35 simp2l 1196 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑦𝐵)
36 simp3l 1198 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑧𝐵)
373, 6ringcl 19307 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦 · 𝑧) ∈ 𝐵)
3834, 35, 36, 37syl3anc 1368 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ∈ 𝐵)
39 eqeq1 2802 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑥 = 0 ↔ (𝑦 · 𝑧) = 0 ))
4039ifbid 4447 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → if(𝑥 = 0 , 0, 1) = if((𝑦 · 𝑧) = 0 , 0, 1))
4119, 25ifex 4473 . . . . . 6 if((𝑦 · 𝑧) = 0 , 0, 1) ∈ V
4240, 15, 41fvmpt 6745 . . . . 5 ((𝑦 · 𝑧) ∈ 𝐵 → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0 , 0, 1))
4338, 42syl 17 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0 , 0, 1))
44 abvtrivd.3 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ≠ 0 )
4544neneqd 2992 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ (𝑦 · 𝑧) = 0 )
4645iffalsed 4436 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if((𝑦 · 𝑧) = 0 , 0, 1) = 1)
4743, 46eqtrd 2833 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = 1)
4835, 27syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑦) = if(𝑦 = 0 , 0, 1))
49 simp2r 1197 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑦0 )
5049neneqd 2992 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ 𝑦 = 0 )
5150iffalsed 4436 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if(𝑦 = 0 , 0, 1) = 1)
5248, 51eqtrd 2833 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑦) = 1)
53 eqeq1 2802 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 0𝑧 = 0 ))
5453ifbid 4447 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 0 , 0, 1) = if(𝑧 = 0 , 0, 1))
5519, 25ifex 4473 . . . . . . 7 if(𝑧 = 0 , 0, 1) ∈ V
5654, 15, 55fvmpt 6745 . . . . . 6 (𝑧𝐵 → (𝐹𝑧) = if(𝑧 = 0 , 0, 1))
5736, 56syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑧) = if(𝑧 = 0 , 0, 1))
58 simp3r 1199 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑧0 )
5958neneqd 2992 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ 𝑧 = 0 )
6059iffalsed 4436 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if(𝑧 = 0 , 0, 1) = 1)
6157, 60eqtrd 2833 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑧) = 1)
6252, 61oveq12d 7153 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ((𝐹𝑦) · (𝐹𝑧)) = (1 · 1))
6333, 47, 623eqtr4a 2859 . 2 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
64 breq1 5033 . . . . . 6 (0 = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) → (0 ≤ 2 ↔ if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2))
65 breq1 5033 . . . . . 6 (1 = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) → (1 ≤ 2 ↔ if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2))
66 0le2 11727 . . . . . 6 0 ≤ 2
67 1le2 11834 . . . . . 6 1 ≤ 2
6864, 65, 66, 67keephyp 4494 . . . . 5 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2
69 df-2 11688 . . . . 5 2 = (1 + 1)
7068, 69breqtri 5055 . . . 4 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ (1 + 1)
7170a1i 11 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ (1 + 1))
72 ringgrp 19295 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
7310, 72syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
74733ad2ant1 1130 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑅 ∈ Grp)
75 eqid 2798 . . . . . 6 (+g𝑅) = (+g𝑅)
763, 75grpcl 18103 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
7774, 35, 36, 76syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
78 eqeq1 2802 . . . . . 6 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑥 = 0 ↔ (𝑦(+g𝑅)𝑧) = 0 ))
7978ifbid 4447 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → if(𝑥 = 0 , 0, 1) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8019, 25ifex 4473 . . . . 5 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ∈ V
8179, 15, 80fvmpt 6745 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → (𝐹‘(𝑦(+g𝑅)𝑧)) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8277, 81syl 17 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦(+g𝑅)𝑧)) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8352, 61oveq12d 7153 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ((𝐹𝑦) + (𝐹𝑧)) = (1 + 1))
8471, 82, 833brtr4d 5062 . 2 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
852, 4, 5, 7, 9, 10, 16, 21, 31, 63, 84isabvd 19584 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  ifcif 4425   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  2c2 11680  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  0gc0g 16705  Grpcgrp 18095  Ringcrg 19290  AbsValcabv 19580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ico 12732  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19233  df-ring 19292  df-abv 19581
This theorem is referenced by:  abvtriv  19605  abvn0b  20068
  Copyright terms: Public domain W3C validator