MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvtrivd Structured version   Visualization version   GIF version

Theorem abvtrivd 20855
Description: The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
abvtriv.a 𝐴 = (AbsVal‘𝑅)
abvtriv.b 𝐵 = (Base‘𝑅)
abvtriv.z 0 = (0g𝑅)
abvtriv.f 𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
abvtrivd.1 · = (.r𝑅)
abvtrivd.2 (𝜑𝑅 ∈ Ring)
abvtrivd.3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ≠ 0 )
Assertion
Ref Expression
abvtrivd (𝜑𝐹𝐴)
Distinct variable groups:   𝑥, 0   𝑦,𝑧,𝐹   𝑥,𝑦,𝑧,𝜑   𝑥,𝑅,𝑦,𝑧   𝑥, ·   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑦,𝑧)   · (𝑦,𝑧)   𝐹(𝑥)   0 (𝑦,𝑧)

Proof of Theorem abvtrivd
StepHypRef Expression
1 abvtriv.a . . 3 𝐴 = (AbsVal‘𝑅)
21a1i 11 . 2 (𝜑𝐴 = (AbsVal‘𝑅))
3 abvtriv.b . . 3 𝐵 = (Base‘𝑅)
43a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
5 eqidd 2741 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
6 abvtrivd.1 . . 3 · = (.r𝑅)
76a1i 11 . 2 (𝜑· = (.r𝑅))
8 abvtriv.z . . 3 0 = (0g𝑅)
98a1i 11 . 2 (𝜑0 = (0g𝑅))
10 abvtrivd.2 . 2 (𝜑𝑅 ∈ Ring)
11 0re 11292 . . . . 5 0 ∈ ℝ
12 1re 11290 . . . . 5 1 ∈ ℝ
1311, 12ifcli 4595 . . . 4 if(𝑥 = 0 , 0, 1) ∈ ℝ
1413a1i 11 . . 3 ((𝜑𝑥𝐵) → if(𝑥 = 0 , 0, 1) ∈ ℝ)
15 abvtriv.f . . 3 𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
1614, 15fmptd 7148 . 2 (𝜑𝐹:𝐵⟶ℝ)
173, 8ring0cl 20290 . . 3 (𝑅 ∈ Ring → 0𝐵)
18 iftrue 4554 . . . 4 (𝑥 = 0 → if(𝑥 = 0 , 0, 1) = 0)
19 c0ex 11284 . . . 4 0 ∈ V
2018, 15, 19fvmpt 7029 . . 3 ( 0𝐵 → (𝐹0 ) = 0)
2110, 17, 203syl 18 . 2 (𝜑 → (𝐹0 ) = 0)
22 0lt1 11812 . . 3 0 < 1
23 eqeq1 2744 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 0𝑦 = 0 ))
2423ifbid 4571 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 = 0 , 0, 1) = if(𝑦 = 0 , 0, 1))
25 1ex 11286 . . . . . . 7 1 ∈ V
2619, 25ifex 4598 . . . . . 6 if(𝑦 = 0 , 0, 1) ∈ V
2724, 15, 26fvmpt 7029 . . . . 5 (𝑦𝐵 → (𝐹𝑦) = if(𝑦 = 0 , 0, 1))
28 ifnefalse 4560 . . . . 5 (𝑦0 → if(𝑦 = 0 , 0, 1) = 1)
2927, 28sylan9eq 2800 . . . 4 ((𝑦𝐵𝑦0 ) → (𝐹𝑦) = 1)
30293adant1 1130 . . 3 ((𝜑𝑦𝐵𝑦0 ) → (𝐹𝑦) = 1)
3122, 30breqtrrid 5204 . 2 ((𝜑𝑦𝐵𝑦0 ) → 0 < (𝐹𝑦))
32 1t1e1 12455 . . . 4 (1 · 1) = 1
3332eqcomi 2749 . . 3 1 = (1 · 1)
34103ad2ant1 1133 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑅 ∈ Ring)
35 simp2l 1199 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑦𝐵)
36 simp3l 1201 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑧𝐵)
373, 6ringcl 20277 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦 · 𝑧) ∈ 𝐵)
3834, 35, 36, 37syl3anc 1371 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ∈ 𝐵)
39 eqeq1 2744 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑥 = 0 ↔ (𝑦 · 𝑧) = 0 ))
4039ifbid 4571 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → if(𝑥 = 0 , 0, 1) = if((𝑦 · 𝑧) = 0 , 0, 1))
4119, 25ifex 4598 . . . . . 6 if((𝑦 · 𝑧) = 0 , 0, 1) ∈ V
4240, 15, 41fvmpt 7029 . . . . 5 ((𝑦 · 𝑧) ∈ 𝐵 → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0 , 0, 1))
4338, 42syl 17 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0 , 0, 1))
44 abvtrivd.3 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ≠ 0 )
4544neneqd 2951 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ (𝑦 · 𝑧) = 0 )
4645iffalsed 4559 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if((𝑦 · 𝑧) = 0 , 0, 1) = 1)
4743, 46eqtrd 2780 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = 1)
4835, 27syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑦) = if(𝑦 = 0 , 0, 1))
49 simp2r 1200 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑦0 )
5049neneqd 2951 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ 𝑦 = 0 )
5150iffalsed 4559 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if(𝑦 = 0 , 0, 1) = 1)
5248, 51eqtrd 2780 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑦) = 1)
53 eqeq1 2744 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 0𝑧 = 0 ))
5453ifbid 4571 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 0 , 0, 1) = if(𝑧 = 0 , 0, 1))
5519, 25ifex 4598 . . . . . . 7 if(𝑧 = 0 , 0, 1) ∈ V
5654, 15, 55fvmpt 7029 . . . . . 6 (𝑧𝐵 → (𝐹𝑧) = if(𝑧 = 0 , 0, 1))
5736, 56syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑧) = if(𝑧 = 0 , 0, 1))
58 simp3r 1202 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑧0 )
5958neneqd 2951 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ 𝑧 = 0 )
6059iffalsed 4559 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if(𝑧 = 0 , 0, 1) = 1)
6157, 60eqtrd 2780 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑧) = 1)
6252, 61oveq12d 7466 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ((𝐹𝑦) · (𝐹𝑧)) = (1 · 1))
6333, 47, 623eqtr4a 2806 . 2 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
64 breq1 5169 . . . . . 6 (0 = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) → (0 ≤ 2 ↔ if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2))
65 breq1 5169 . . . . . 6 (1 = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) → (1 ≤ 2 ↔ if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2))
66 0le2 12395 . . . . . 6 0 ≤ 2
67 1le2 12502 . . . . . 6 1 ≤ 2
6864, 65, 66, 67keephyp 4619 . . . . 5 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2
69 df-2 12356 . . . . 5 2 = (1 + 1)
7068, 69breqtri 5191 . . . 4 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ (1 + 1)
7170a1i 11 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ (1 + 1))
72 ringgrp 20265 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
7310, 72syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
74733ad2ant1 1133 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑅 ∈ Grp)
75 eqid 2740 . . . . . 6 (+g𝑅) = (+g𝑅)
763, 75grpcl 18981 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
7774, 35, 36, 76syl3anc 1371 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
78 eqeq1 2744 . . . . . 6 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑥 = 0 ↔ (𝑦(+g𝑅)𝑧) = 0 ))
7978ifbid 4571 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → if(𝑥 = 0 , 0, 1) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8019, 25ifex 4598 . . . . 5 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ∈ V
8179, 15, 80fvmpt 7029 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → (𝐹‘(𝑦(+g𝑅)𝑧)) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8277, 81syl 17 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦(+g𝑅)𝑧)) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8352, 61oveq12d 7466 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ((𝐹𝑦) + (𝐹𝑧)) = (1 + 1))
8471, 82, 833brtr4d 5198 . 2 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
852, 4, 5, 7, 9, 10, 16, 21, 31, 63, 84isabvd 20835 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  2c2 12348  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  Grpcgrp 18973  Ringcrg 20260  AbsValcabv 20831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-ico 13413  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-abv 20832
This theorem is referenced by:  abvtrivg  20856
  Copyright terms: Public domain W3C validator