MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvtrivd Structured version   Visualization version   GIF version

Theorem abvtrivd 20015
Description: The trivial absolute value. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
abvtriv.a 𝐴 = (AbsVal‘𝑅)
abvtriv.b 𝐵 = (Base‘𝑅)
abvtriv.z 0 = (0g𝑅)
abvtriv.f 𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
abvtrivd.1 · = (.r𝑅)
abvtrivd.2 (𝜑𝑅 ∈ Ring)
abvtrivd.3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ≠ 0 )
Assertion
Ref Expression
abvtrivd (𝜑𝐹𝐴)
Distinct variable groups:   𝑥, 0   𝑦,𝑧,𝐹   𝑥,𝑦,𝑧,𝜑   𝑥,𝑅,𝑦,𝑧   𝑥, ·   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑦,𝑧)   · (𝑦,𝑧)   𝐹(𝑥)   0 (𝑦,𝑧)

Proof of Theorem abvtrivd
StepHypRef Expression
1 abvtriv.a . . 3 𝐴 = (AbsVal‘𝑅)
21a1i 11 . 2 (𝜑𝐴 = (AbsVal‘𝑅))
3 abvtriv.b . . 3 𝐵 = (Base‘𝑅)
43a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
5 eqidd 2739 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
6 abvtrivd.1 . . 3 · = (.r𝑅)
76a1i 11 . 2 (𝜑· = (.r𝑅))
8 abvtriv.z . . 3 0 = (0g𝑅)
98a1i 11 . 2 (𝜑0 = (0g𝑅))
10 abvtrivd.2 . 2 (𝜑𝑅 ∈ Ring)
11 0re 10908 . . . . 5 0 ∈ ℝ
12 1re 10906 . . . . 5 1 ∈ ℝ
1311, 12ifcli 4503 . . . 4 if(𝑥 = 0 , 0, 1) ∈ ℝ
1413a1i 11 . . 3 ((𝜑𝑥𝐵) → if(𝑥 = 0 , 0, 1) ∈ ℝ)
15 abvtriv.f . . 3 𝐹 = (𝑥𝐵 ↦ if(𝑥 = 0 , 0, 1))
1614, 15fmptd 6970 . 2 (𝜑𝐹:𝐵⟶ℝ)
173, 8ring0cl 19723 . . 3 (𝑅 ∈ Ring → 0𝐵)
18 iftrue 4462 . . . 4 (𝑥 = 0 → if(𝑥 = 0 , 0, 1) = 0)
19 c0ex 10900 . . . 4 0 ∈ V
2018, 15, 19fvmpt 6857 . . 3 ( 0𝐵 → (𝐹0 ) = 0)
2110, 17, 203syl 18 . 2 (𝜑 → (𝐹0 ) = 0)
22 0lt1 11427 . . 3 0 < 1
23 eqeq1 2742 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 0𝑦 = 0 ))
2423ifbid 4479 . . . . . 6 (𝑥 = 𝑦 → if(𝑥 = 0 , 0, 1) = if(𝑦 = 0 , 0, 1))
25 1ex 10902 . . . . . . 7 1 ∈ V
2619, 25ifex 4506 . . . . . 6 if(𝑦 = 0 , 0, 1) ∈ V
2724, 15, 26fvmpt 6857 . . . . 5 (𝑦𝐵 → (𝐹𝑦) = if(𝑦 = 0 , 0, 1))
28 ifnefalse 4468 . . . . 5 (𝑦0 → if(𝑦 = 0 , 0, 1) = 1)
2927, 28sylan9eq 2799 . . . 4 ((𝑦𝐵𝑦0 ) → (𝐹𝑦) = 1)
30293adant1 1128 . . 3 ((𝜑𝑦𝐵𝑦0 ) → (𝐹𝑦) = 1)
3122, 30breqtrrid 5108 . 2 ((𝜑𝑦𝐵𝑦0 ) → 0 < (𝐹𝑦))
32 1t1e1 12065 . . . 4 (1 · 1) = 1
3332eqcomi 2747 . . 3 1 = (1 · 1)
34103ad2ant1 1131 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑅 ∈ Ring)
35 simp2l 1197 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑦𝐵)
36 simp3l 1199 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑧𝐵)
373, 6ringcl 19715 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦 · 𝑧) ∈ 𝐵)
3834, 35, 36, 37syl3anc 1369 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ∈ 𝐵)
39 eqeq1 2742 . . . . . . 7 (𝑥 = (𝑦 · 𝑧) → (𝑥 = 0 ↔ (𝑦 · 𝑧) = 0 ))
4039ifbid 4479 . . . . . 6 (𝑥 = (𝑦 · 𝑧) → if(𝑥 = 0 , 0, 1) = if((𝑦 · 𝑧) = 0 , 0, 1))
4119, 25ifex 4506 . . . . . 6 if((𝑦 · 𝑧) = 0 , 0, 1) ∈ V
4240, 15, 41fvmpt 6857 . . . . 5 ((𝑦 · 𝑧) ∈ 𝐵 → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0 , 0, 1))
4338, 42syl 17 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0 , 0, 1))
44 abvtrivd.3 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦 · 𝑧) ≠ 0 )
4544neneqd 2947 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ (𝑦 · 𝑧) = 0 )
4645iffalsed 4467 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if((𝑦 · 𝑧) = 0 , 0, 1) = 1)
4743, 46eqtrd 2778 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = 1)
4835, 27syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑦) = if(𝑦 = 0 , 0, 1))
49 simp2r 1198 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑦0 )
5049neneqd 2947 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ 𝑦 = 0 )
5150iffalsed 4467 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if(𝑦 = 0 , 0, 1) = 1)
5248, 51eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑦) = 1)
53 eqeq1 2742 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 0𝑧 = 0 ))
5453ifbid 4479 . . . . . . 7 (𝑥 = 𝑧 → if(𝑥 = 0 , 0, 1) = if(𝑧 = 0 , 0, 1))
5519, 25ifex 4506 . . . . . . 7 if(𝑧 = 0 , 0, 1) ∈ V
5654, 15, 55fvmpt 6857 . . . . . 6 (𝑧𝐵 → (𝐹𝑧) = if(𝑧 = 0 , 0, 1))
5736, 56syl 17 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑧) = if(𝑧 = 0 , 0, 1))
58 simp3r 1200 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑧0 )
5958neneqd 2947 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ¬ 𝑧 = 0 )
6059iffalsed 4467 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if(𝑧 = 0 , 0, 1) = 1)
6157, 60eqtrd 2778 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹𝑧) = 1)
6252, 61oveq12d 7273 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ((𝐹𝑦) · (𝐹𝑧)) = (1 · 1))
6333, 47, 623eqtr4a 2805 . 2 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹𝑦) · (𝐹𝑧)))
64 breq1 5073 . . . . . 6 (0 = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) → (0 ≤ 2 ↔ if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2))
65 breq1 5073 . . . . . 6 (1 = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) → (1 ≤ 2 ↔ if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2))
66 0le2 12005 . . . . . 6 0 ≤ 2
67 1le2 12112 . . . . . 6 1 ≤ 2
6864, 65, 66, 67keephyp 4527 . . . . 5 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ 2
69 df-2 11966 . . . . 5 2 = (1 + 1)
7068, 69breqtri 5095 . . . 4 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ (1 + 1)
7170a1i 11 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ≤ (1 + 1))
72 ringgrp 19703 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
7310, 72syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
74733ad2ant1 1131 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → 𝑅 ∈ Grp)
75 eqid 2738 . . . . . 6 (+g𝑅) = (+g𝑅)
763, 75grpcl 18500 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
7774, 35, 36, 76syl3anc 1369 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
78 eqeq1 2742 . . . . . 6 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑥 = 0 ↔ (𝑦(+g𝑅)𝑧) = 0 ))
7978ifbid 4479 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → if(𝑥 = 0 , 0, 1) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8019, 25ifex 4506 . . . . 5 if((𝑦(+g𝑅)𝑧) = 0 , 0, 1) ∈ V
8179, 15, 80fvmpt 6857 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → (𝐹‘(𝑦(+g𝑅)𝑧)) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8277, 81syl 17 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦(+g𝑅)𝑧)) = if((𝑦(+g𝑅)𝑧) = 0 , 0, 1))
8352, 61oveq12d 7273 . . 3 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → ((𝐹𝑦) + (𝐹𝑧)) = (1 + 1))
8471, 82, 833brtr4d 5102 . 2 ((𝜑 ∧ (𝑦𝐵𝑦0 ) ∧ (𝑧𝐵𝑧0 )) → (𝐹‘(𝑦(+g𝑅)𝑧)) ≤ ((𝐹𝑦) + (𝐹𝑧)))
852, 4, 5, 7, 9, 10, 16, 21, 31, 63, 84isabvd 19995 1 (𝜑𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  2c2 11958  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  0gc0g 17067  Grpcgrp 18492  Ringcrg 19698  AbsValcabv 19991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-ico 13014  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ring 19700  df-abv 19992
This theorem is referenced by:  abvtriv  20016  abvn0b  20486
  Copyright terms: Public domain W3C validator