Proof of Theorem abvtrivd
| Step | Hyp | Ref
| Expression |
| 1 | | abvtriv.a |
. . 3
⊢ 𝐴 = (AbsVal‘𝑅) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → 𝐴 = (AbsVal‘𝑅)) |
| 3 | | abvtriv.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
| 4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 5 | | eqidd 2737 |
. 2
⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑅)) |
| 6 | | abvtrivd.1 |
. . 3
⊢ · =
(.r‘𝑅) |
| 7 | 6 | a1i 11 |
. 2
⊢ (𝜑 → · =
(.r‘𝑅)) |
| 8 | | abvtriv.z |
. . 3
⊢ 0 =
(0g‘𝑅) |
| 9 | 8 | a1i 11 |
. 2
⊢ (𝜑 → 0 =
(0g‘𝑅)) |
| 10 | | abvtrivd.2 |
. 2
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 11 | | 0re 11264 |
. . . . 5
⊢ 0 ∈
ℝ |
| 12 | | 1re 11262 |
. . . . 5
⊢ 1 ∈
ℝ |
| 13 | 11, 12 | ifcli 4572 |
. . . 4
⊢ if(𝑥 = 0 , 0, 1) ∈
ℝ |
| 14 | 13 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → if(𝑥 = 0 , 0, 1) ∈
ℝ) |
| 15 | | abvtriv.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, 1)) |
| 16 | 14, 15 | fmptd 7133 |
. 2
⊢ (𝜑 → 𝐹:𝐵⟶ℝ) |
| 17 | 3, 8 | ring0cl 20265 |
. . 3
⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| 18 | | iftrue 4530 |
. . . 4
⊢ (𝑥 = 0 → if(𝑥 = 0 , 0, 1) =
0) |
| 19 | | c0ex 11256 |
. . . 4
⊢ 0 ∈
V |
| 20 | 18, 15, 19 | fvmpt 7015 |
. . 3
⊢ ( 0 ∈ 𝐵 → (𝐹‘ 0 ) = 0) |
| 21 | 10, 17, 20 | 3syl 18 |
. 2
⊢ (𝜑 → (𝐹‘ 0 ) = 0) |
| 22 | | 0lt1 11786 |
. . 3
⊢ 0 <
1 |
| 23 | | eqeq1 2740 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = 0 ↔ 𝑦 = 0 )) |
| 24 | 23 | ifbid 4548 |
. . . . . 6
⊢ (𝑥 = 𝑦 → if(𝑥 = 0 , 0, 1) = if(𝑦 = 0 , 0, 1)) |
| 25 | | 1ex 11258 |
. . . . . . 7
⊢ 1 ∈
V |
| 26 | 19, 25 | ifex 4575 |
. . . . . 6
⊢ if(𝑦 = 0 , 0, 1) ∈
V |
| 27 | 24, 15, 26 | fvmpt 7015 |
. . . . 5
⊢ (𝑦 ∈ 𝐵 → (𝐹‘𝑦) = if(𝑦 = 0 , 0, 1)) |
| 28 | | ifnefalse 4536 |
. . . . 5
⊢ (𝑦 ≠ 0 → if(𝑦 = 0 , 0, 1) =
1) |
| 29 | 27, 28 | sylan9eq 2796 |
. . . 4
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) → (𝐹‘𝑦) = 1) |
| 30 | 29 | 3adant1 1130 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) → (𝐹‘𝑦) = 1) |
| 31 | 22, 30 | breqtrrid 5180 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) → 0 < (𝐹‘𝑦)) |
| 32 | | 1t1e1 12429 |
. . . 4
⊢ (1
· 1) = 1 |
| 33 | 32 | eqcomi 2745 |
. . 3
⊢ 1 = (1
· 1) |
| 34 | 10 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → 𝑅 ∈ Ring) |
| 35 | | simp2l 1199 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → 𝑦 ∈ 𝐵) |
| 36 | | simp3l 1201 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → 𝑧 ∈ 𝐵) |
| 37 | 3, 6 | ringcl 20248 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦 · 𝑧) ∈ 𝐵) |
| 38 | 34, 35, 36, 37 | syl3anc 1372 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦 · 𝑧) ∈ 𝐵) |
| 39 | | eqeq1 2740 |
. . . . . . 7
⊢ (𝑥 = (𝑦 · 𝑧) → (𝑥 = 0 ↔ (𝑦 · 𝑧) = 0 )) |
| 40 | 39 | ifbid 4548 |
. . . . . 6
⊢ (𝑥 = (𝑦 · 𝑧) → if(𝑥 = 0 , 0, 1) = if((𝑦 · 𝑧) = 0 , 0, 1)) |
| 41 | 19, 25 | ifex 4575 |
. . . . . 6
⊢ if((𝑦 · 𝑧) = 0 , 0, 1) ∈
V |
| 42 | 40, 15, 41 | fvmpt 7015 |
. . . . 5
⊢ ((𝑦 · 𝑧) ∈ 𝐵 → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0 , 0, 1)) |
| 43 | 38, 42 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝐹‘(𝑦 · 𝑧)) = if((𝑦 · 𝑧) = 0 , 0, 1)) |
| 44 | | abvtrivd.3 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦 · 𝑧) ≠ 0 ) |
| 45 | 44 | neneqd 2944 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → ¬ (𝑦 · 𝑧) = 0 ) |
| 46 | 45 | iffalsed 4535 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → if((𝑦 · 𝑧) = 0 , 0, 1) =
1) |
| 47 | 43, 46 | eqtrd 2776 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝐹‘(𝑦 · 𝑧)) = 1) |
| 48 | 35, 27 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝐹‘𝑦) = if(𝑦 = 0 , 0, 1)) |
| 49 | | simp2r 1200 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → 𝑦 ≠ 0 ) |
| 50 | 49 | neneqd 2944 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → ¬ 𝑦 = 0 ) |
| 51 | 50 | iffalsed 4535 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → if(𝑦 = 0 , 0, 1) =
1) |
| 52 | 48, 51 | eqtrd 2776 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝐹‘𝑦) = 1) |
| 53 | | eqeq1 2740 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 = 0 ↔ 𝑧 = 0 )) |
| 54 | 53 | ifbid 4548 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → if(𝑥 = 0 , 0, 1) = if(𝑧 = 0 , 0, 1)) |
| 55 | 19, 25 | ifex 4575 |
. . . . . . 7
⊢ if(𝑧 = 0 , 0, 1) ∈
V |
| 56 | 54, 15, 55 | fvmpt 7015 |
. . . . . 6
⊢ (𝑧 ∈ 𝐵 → (𝐹‘𝑧) = if(𝑧 = 0 , 0, 1)) |
| 57 | 36, 56 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝐹‘𝑧) = if(𝑧 = 0 , 0, 1)) |
| 58 | | simp3r 1202 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → 𝑧 ≠ 0 ) |
| 59 | 58 | neneqd 2944 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → ¬ 𝑧 = 0 ) |
| 60 | 59 | iffalsed 4535 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → if(𝑧 = 0 , 0, 1) =
1) |
| 61 | 57, 60 | eqtrd 2776 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝐹‘𝑧) = 1) |
| 62 | 52, 61 | oveq12d 7450 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → ((𝐹‘𝑦) · (𝐹‘𝑧)) = (1 · 1)) |
| 63 | 33, 47, 62 | 3eqtr4a 2802 |
. 2
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝐹‘(𝑦 · 𝑧)) = ((𝐹‘𝑦) · (𝐹‘𝑧))) |
| 64 | | breq1 5145 |
. . . . . 6
⊢ (0 =
if((𝑦(+g‘𝑅)𝑧) = 0 , 0, 1) → (0 ≤ 2
↔ if((𝑦(+g‘𝑅)𝑧) = 0 , 0, 1) ≤
2)) |
| 65 | | breq1 5145 |
. . . . . 6
⊢ (1 =
if((𝑦(+g‘𝑅)𝑧) = 0 , 0, 1) → (1 ≤ 2
↔ if((𝑦(+g‘𝑅)𝑧) = 0 , 0, 1) ≤
2)) |
| 66 | | 0le2 12369 |
. . . . . 6
⊢ 0 ≤
2 |
| 67 | | 1le2 12476 |
. . . . . 6
⊢ 1 ≤
2 |
| 68 | 64, 65, 66, 67 | keephyp 4596 |
. . . . 5
⊢ if((𝑦(+g‘𝑅)𝑧) = 0 , 0, 1) ≤
2 |
| 69 | | df-2 12330 |
. . . . 5
⊢ 2 = (1 +
1) |
| 70 | 68, 69 | breqtri 5167 |
. . . 4
⊢ if((𝑦(+g‘𝑅)𝑧) = 0 , 0, 1) ≤ (1 +
1) |
| 71 | 70 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → if((𝑦(+g‘𝑅)𝑧) = 0 , 0, 1) ≤ (1 +
1)) |
| 72 | | ringgrp 20236 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 73 | 10, 72 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 74 | 73 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → 𝑅 ∈ Grp) |
| 75 | | eqid 2736 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 76 | 3, 75 | grpcl 18960 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
| 77 | 74, 35, 36, 76 | syl3anc 1372 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
| 78 | | eqeq1 2740 |
. . . . . 6
⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝑥 = 0 ↔ (𝑦(+g‘𝑅)𝑧) = 0 )) |
| 79 | 78 | ifbid 4548 |
. . . . 5
⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → if(𝑥 = 0 , 0, 1) = if((𝑦(+g‘𝑅)𝑧) = 0 , 0, 1)) |
| 80 | 19, 25 | ifex 4575 |
. . . . 5
⊢ if((𝑦(+g‘𝑅)𝑧) = 0 , 0, 1) ∈
V |
| 81 | 79, 15, 80 | fvmpt 7015 |
. . . 4
⊢ ((𝑦(+g‘𝑅)𝑧) ∈ 𝐵 → (𝐹‘(𝑦(+g‘𝑅)𝑧)) = if((𝑦(+g‘𝑅)𝑧) = 0 , 0, 1)) |
| 82 | 77, 81 | syl 17 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) = if((𝑦(+g‘𝑅)𝑧) = 0 , 0, 1)) |
| 83 | 52, 61 | oveq12d 7450 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → ((𝐹‘𝑦) + (𝐹‘𝑧)) = (1 + 1)) |
| 84 | 71, 82, 83 | 3brtr4d 5174 |
. 2
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 0 ) ∧ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 0 )) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) ≤ ((𝐹‘𝑦) + (𝐹‘𝑧))) |
| 85 | 2, 4, 5, 7, 9, 10,
16, 21, 31, 63, 84 | isabvd 20814 |
1
⊢ (𝜑 → 𝐹 ∈ 𝐴) |