| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > marep01ma | Structured version Visualization version GIF version | ||
| Description: Replacing a row of a square matrix by a row with 0's and a 1 results in a square matrix of the same dimension. (Contributed by AV, 30-Dec-2018.) |
| Ref | Expression |
|---|---|
| marep01ma.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| marep01ma.b | ⊢ 𝐵 = (Base‘𝐴) |
| marep01ma.r | ⊢ 𝑅 ∈ CRing |
| marep01ma.0 | ⊢ 0 = (0g‘𝑅) |
| marep01ma.1 | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| marep01ma | ⊢ (𝑀 ∈ 𝐵 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | marep01ma.a | . 2 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | eqid 2737 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | marep01ma.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | 1, 3 | matrcl 22416 | . . 3 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 5 | 4 | simpld 494 | . 2 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 6 | marep01ma.r | . . 3 ⊢ 𝑅 ∈ CRing | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝑀 ∈ 𝐵 → 𝑅 ∈ CRing) |
| 8 | crngring 20242 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 9 | marep01ma.1 | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 10 | 2, 9 | ringidcl 20262 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 11 | 6, 8, 10 | mp2b 10 | . . . . 5 ⊢ 1 ∈ (Base‘𝑅) |
| 12 | marep01ma.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 13 | 2, 12 | ring0cl 20264 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
| 14 | 6, 8, 13 | mp2b 10 | . . . . 5 ⊢ 0 ∈ (Base‘𝑅) |
| 15 | 11, 14 | ifcli 4573 | . . . 4 ⊢ if(𝑙 = 𝐼, 1 , 0 ) ∈ (Base‘𝑅) |
| 16 | 15 | a1i 11 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑙 = 𝐼, 1 , 0 ) ∈ (Base‘𝑅)) |
| 17 | simp2 1138 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑘 ∈ 𝑁) | |
| 18 | simp3 1139 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) | |
| 19 | id 22 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ 𝐵) | |
| 20 | 19, 3 | eleqtrdi 2851 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
| 21 | 20 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
| 22 | 1, 2 | matecl 22431 | . . . 4 ⊢ ((𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑘𝑀𝑙) ∈ (Base‘𝑅)) |
| 23 | 17, 18, 21, 22 | syl3anc 1373 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → (𝑘𝑀𝑙) ∈ (Base‘𝑅)) |
| 24 | 16, 23 | ifcld 4572 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ 𝑁 ∧ 𝑙 ∈ 𝑁) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)) ∈ (Base‘𝑅)) |
| 25 | 1, 2, 3, 5, 7, 24 | matbas2d 22429 | 1 ⊢ (𝑀 ∈ 𝐵 → (𝑘 ∈ 𝑁, 𝑙 ∈ 𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ifcif 4525 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 Fincfn 8985 Basecbs 17247 0gc0g 17484 1rcur 20178 Ringcrg 20230 CRingccrg 20231 Mat cmat 22411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-prds 17492 df-pws 17494 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-mgp 20138 df-ur 20179 df-ring 20232 df-cring 20233 df-sra 21172 df-rgmod 21173 df-dsmm 21752 df-frlm 21767 df-mat 22412 |
| This theorem is referenced by: smadiadetlem0 22667 smadiadetlem1 22668 smadiadet 22676 |
| Copyright terms: Public domain | W3C validator |