MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marep01ma Structured version   Visualization version   GIF version

Theorem marep01ma 22383
Description: Replacing a row of a square matrix by a row with 0's and a 1 results in a square matrix of the same dimension. (Contributed by AV, 30-Dec-2018.)
Hypotheses
Ref Expression
marep01ma.a 𝐴 = (𝑁 Mat 𝑅)
marep01ma.b 𝐵 = (Base‘𝐴)
marep01ma.r 𝑅 ∈ CRing
marep01ma.0 0 = (0g𝑅)
marep01ma.1 1 = (1r𝑅)
Assertion
Ref Expression
marep01ma (𝑀𝐵 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) ∈ 𝐵)
Distinct variable groups:   𝑘,𝑙,𝐵   𝑘,𝑀,𝑙   𝑘,𝑁,𝑙   𝑅,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑘,𝑙)   1 (𝑘,𝑙)   𝐻(𝑘,𝑙)   𝐼(𝑘,𝑙)   0 (𝑘,𝑙)

Proof of Theorem marep01ma
StepHypRef Expression
1 marep01ma.a . 2 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2731 . 2 (Base‘𝑅) = (Base‘𝑅)
3 marep01ma.b . 2 𝐵 = (Base‘𝐴)
41, 3matrcl 22133 . . 3 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
54simpld 494 . 2 (𝑀𝐵𝑁 ∈ Fin)
6 marep01ma.r . . 3 𝑅 ∈ CRing
76a1i 11 . 2 (𝑀𝐵𝑅 ∈ CRing)
8 crngring 20140 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
9 marep01ma.1 . . . . . . 7 1 = (1r𝑅)
102, 9ringidcl 20155 . . . . . 6 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
116, 8, 10mp2b 10 . . . . 5 1 ∈ (Base‘𝑅)
12 marep01ma.0 . . . . . . 7 0 = (0g𝑅)
132, 12ring0cl 20156 . . . . . 6 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
146, 8, 13mp2b 10 . . . . 5 0 ∈ (Base‘𝑅)
1511, 14ifcli 4575 . . . 4 if(𝑙 = 𝐼, 1 , 0 ) ∈ (Base‘𝑅)
1615a1i 11 . . 3 ((𝑀𝐵𝑘𝑁𝑙𝑁) → if(𝑙 = 𝐼, 1 , 0 ) ∈ (Base‘𝑅))
17 simp2 1136 . . . 4 ((𝑀𝐵𝑘𝑁𝑙𝑁) → 𝑘𝑁)
18 simp3 1137 . . . 4 ((𝑀𝐵𝑘𝑁𝑙𝑁) → 𝑙𝑁)
19 id 22 . . . . . 6 (𝑀𝐵𝑀𝐵)
2019, 3eleqtrdi 2842 . . . . 5 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
21203ad2ant1 1132 . . . 4 ((𝑀𝐵𝑘𝑁𝑙𝑁) → 𝑀 ∈ (Base‘𝐴))
221, 2matecl 22148 . . . 4 ((𝑘𝑁𝑙𝑁𝑀 ∈ (Base‘𝐴)) → (𝑘𝑀𝑙) ∈ (Base‘𝑅))
2317, 18, 21, 22syl3anc 1370 . . 3 ((𝑀𝐵𝑘𝑁𝑙𝑁) → (𝑘𝑀𝑙) ∈ (Base‘𝑅))
2416, 23ifcld 4574 . 2 ((𝑀𝐵𝑘𝑁𝑙𝑁) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)) ∈ (Base‘𝑅))
251, 2, 3, 5, 7, 24matbas2d 22146 1 (𝑀𝐵 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3473  ifcif 4528  cfv 6543  (class class class)co 7412  cmpo 7414  Fincfn 8943  Basecbs 17149  0gc0g 17390  1rcur 20076  Ringcrg 20128  CRingccrg 20129   Mat cmat 22128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8151  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-ixp 8896  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-fsupp 9366  df-sup 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-fz 13490  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-hom 17226  df-cco 17227  df-0g 17392  df-prds 17398  df-pws 17400  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-grp 18859  df-mgp 20030  df-ur 20077  df-ring 20130  df-cring 20131  df-sra 20931  df-rgmod 20932  df-dsmm 21507  df-frlm 21522  df-mat 22129
This theorem is referenced by:  smadiadetlem0  22384  smadiadetlem1  22385  smadiadet  22393
  Copyright terms: Public domain W3C validator