MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marep01ma Structured version   Visualization version   GIF version

Theorem marep01ma 21261
Description: Replacing a row of a square matrix by a row with 0's and a 1 results in a square matrix of the same dimension. (Contributed by AV, 30-Dec-2018.)
Hypotheses
Ref Expression
marep01ma.a 𝐴 = (𝑁 Mat 𝑅)
marep01ma.b 𝐵 = (Base‘𝐴)
marep01ma.r 𝑅 ∈ CRing
marep01ma.0 0 = (0g𝑅)
marep01ma.1 1 = (1r𝑅)
Assertion
Ref Expression
marep01ma (𝑀𝐵 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) ∈ 𝐵)
Distinct variable groups:   𝑘,𝑙,𝐵   𝑘,𝑀,𝑙   𝑘,𝑁,𝑙   𝑅,𝑘,𝑙
Allowed substitution hints:   𝐴(𝑘,𝑙)   1 (𝑘,𝑙)   𝐻(𝑘,𝑙)   𝐼(𝑘,𝑙)   0 (𝑘,𝑙)

Proof of Theorem marep01ma
StepHypRef Expression
1 marep01ma.a . 2 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2819 . 2 (Base‘𝑅) = (Base‘𝑅)
3 marep01ma.b . 2 𝐵 = (Base‘𝐴)
41, 3matrcl 21013 . . 3 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
54simpld 497 . 2 (𝑀𝐵𝑁 ∈ Fin)
6 marep01ma.r . . 3 𝑅 ∈ CRing
76a1i 11 . 2 (𝑀𝐵𝑅 ∈ CRing)
8 crngring 19300 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
9 marep01ma.1 . . . . . . 7 1 = (1r𝑅)
102, 9ringidcl 19310 . . . . . 6 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
116, 8, 10mp2b 10 . . . . 5 1 ∈ (Base‘𝑅)
12 marep01ma.0 . . . . . . 7 0 = (0g𝑅)
132, 12ring0cl 19311 . . . . . 6 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
146, 8, 13mp2b 10 . . . . 5 0 ∈ (Base‘𝑅)
1511, 14ifcli 4511 . . . 4 if(𝑙 = 𝐼, 1 , 0 ) ∈ (Base‘𝑅)
1615a1i 11 . . 3 ((𝑀𝐵𝑘𝑁𝑙𝑁) → if(𝑙 = 𝐼, 1 , 0 ) ∈ (Base‘𝑅))
17 simp2 1131 . . . 4 ((𝑀𝐵𝑘𝑁𝑙𝑁) → 𝑘𝑁)
18 simp3 1132 . . . 4 ((𝑀𝐵𝑘𝑁𝑙𝑁) → 𝑙𝑁)
19 id 22 . . . . . 6 (𝑀𝐵𝑀𝐵)
2019, 3eleqtrdi 2921 . . . . 5 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
21203ad2ant1 1127 . . . 4 ((𝑀𝐵𝑘𝑁𝑙𝑁) → 𝑀 ∈ (Base‘𝐴))
221, 2matecl 21026 . . . 4 ((𝑘𝑁𝑙𝑁𝑀 ∈ (Base‘𝐴)) → (𝑘𝑀𝑙) ∈ (Base‘𝑅))
2317, 18, 21, 22syl3anc 1365 . . 3 ((𝑀𝐵𝑘𝑁𝑙𝑁) → (𝑘𝑀𝑙) ∈ (Base‘𝑅))
2416, 23ifcld 4510 . 2 ((𝑀𝐵𝑘𝑁𝑙𝑁) → if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙)) ∈ (Base‘𝑅))
251, 2, 3, 5, 7, 24matbas2d 21024 1 (𝑀𝐵 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1081   = wceq 1530  wcel 2107  Vcvv 3493  ifcif 4465  cfv 6348  (class class class)co 7148  cmpo 7150  Fincfn 8501  Basecbs 16475  0gc0g 16705  1rcur 19243  Ringcrg 19289  CRingccrg 19290   Mat cmat 21008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-ot 4568  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-sra 19936  df-rgmod 19937  df-dsmm 20868  df-frlm 20883  df-mat 21009
This theorem is referenced by:  smadiadetlem0  21262  smadiadetlem1  21263  smadiadet  21271
  Copyright terms: Public domain W3C validator