![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrmullid | Structured version Visualization version GIF version |
Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
dchrn0.b | ⊢ 𝐵 = (Base‘𝑍) |
dchrn0.u | ⊢ 𝑈 = (Unit‘𝑍) |
dchr1cl.o | ⊢ 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0)) |
dchrmullid.t | ⊢ · = (+g‘𝐺) |
dchrmullid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
Ref | Expression |
---|---|
dchrmullid | ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrmhm.g | . . 3 ⊢ 𝐺 = (DChr‘𝑁) | |
2 | dchrmhm.z | . . 3 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
3 | dchrmhm.b | . . 3 ⊢ 𝐷 = (Base‘𝐺) | |
4 | dchrmullid.t | . . 3 ⊢ · = (+g‘𝐺) | |
5 | dchrn0.b | . . . 4 ⊢ 𝐵 = (Base‘𝑍) | |
6 | dchrn0.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑍) | |
7 | dchr1cl.o | . . . 4 ⊢ 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0)) | |
8 | dchrmullid.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
9 | 1, 3 | dchrrcl 27088 | . . . . 5 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
11 | 1, 2, 3, 5, 6, 7, 10 | dchr1cl 27099 | . . 3 ⊢ (𝜑 → 1 ∈ 𝐷) |
12 | 1, 2, 3, 4, 11, 8 | dchrmul 27096 | . 2 ⊢ (𝜑 → ( 1 · 𝑋) = ( 1 ∘f · 𝑋)) |
13 | oveq1 7419 | . . . . . 6 ⊢ (1 = if(𝑘 ∈ 𝑈, 1, 0) → (1 · (𝑋‘𝑘)) = (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘))) | |
14 | 13 | eqeq1d 2733 | . . . . 5 ⊢ (1 = if(𝑘 ∈ 𝑈, 1, 0) → ((1 · (𝑋‘𝑘)) = (𝑋‘𝑘) ↔ (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘)) = (𝑋‘𝑘))) |
15 | oveq1 7419 | . . . . . 6 ⊢ (0 = if(𝑘 ∈ 𝑈, 1, 0) → (0 · (𝑋‘𝑘)) = (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘))) | |
16 | 15 | eqeq1d 2733 | . . . . 5 ⊢ (0 = if(𝑘 ∈ 𝑈, 1, 0) → ((0 · (𝑋‘𝑘)) = (𝑋‘𝑘) ↔ (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘)) = (𝑋‘𝑘))) |
17 | 1, 2, 3, 5, 8 | dchrf 27090 | . . . . . . . 8 ⊢ (𝜑 → 𝑋:𝐵⟶ℂ) |
18 | 17 | ffvelcdmda 7086 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑋‘𝑘) ∈ ℂ) |
19 | 18 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝑈) → (𝑋‘𝑘) ∈ ℂ) |
20 | 19 | mullidd 11239 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝑈) → (1 · (𝑋‘𝑘)) = (𝑋‘𝑘)) |
21 | 0cn 11213 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
22 | 21 | mul02i 11410 | . . . . . 6 ⊢ (0 · 0) = 0 |
23 | 1, 2, 5, 6, 10, 3 | dchrelbas2 27085 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘 ∈ 𝐵 ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)))) |
24 | 8, 23 | mpbid 231 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘 ∈ 𝐵 ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈))) |
25 | 24 | simprd 495 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑘 ∈ 𝐵 ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
26 | 25 | r19.21bi 3247 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
27 | 26 | necon1bd 2957 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (¬ 𝑘 ∈ 𝑈 → (𝑋‘𝑘) = 0)) |
28 | 27 | imp 406 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝑈) → (𝑋‘𝑘) = 0) |
29 | 28 | oveq2d 7428 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝑈) → (0 · (𝑋‘𝑘)) = (0 · 0)) |
30 | 22, 29, 28 | 3eqtr4a 2797 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝑈) → (0 · (𝑋‘𝑘)) = (𝑋‘𝑘)) |
31 | 14, 16, 20, 30 | ifbothda 4566 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘)) = (𝑋‘𝑘)) |
32 | 31 | mpteq2dva 5248 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘))) = (𝑘 ∈ 𝐵 ↦ (𝑋‘𝑘))) |
33 | 5 | fvexi 6905 | . . . . 5 ⊢ 𝐵 ∈ V |
34 | 33 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
35 | ax-1cn 11174 | . . . . . 6 ⊢ 1 ∈ ℂ | |
36 | 35, 21 | ifcli 4575 | . . . . 5 ⊢ if(𝑘 ∈ 𝑈, 1, 0) ∈ ℂ |
37 | 36 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝑈, 1, 0) ∈ ℂ) |
38 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0))) |
39 | 17 | feqmptd 6960 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑘 ∈ 𝐵 ↦ (𝑋‘𝑘))) |
40 | 34, 37, 18, 38, 39 | offval2 7694 | . . 3 ⊢ (𝜑 → ( 1 ∘f · 𝑋) = (𝑘 ∈ 𝐵 ↦ (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘)))) |
41 | 32, 40, 39 | 3eqtr4d 2781 | . 2 ⊢ (𝜑 → ( 1 ∘f · 𝑋) = 𝑋) |
42 | 12, 41 | eqtrd 2771 | 1 ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 Vcvv 3473 ifcif 4528 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 ∘f cof 7672 ℂcc 11114 0cc0 11116 1c1 11117 · cmul 11121 ℕcn 12219 Basecbs 17151 +gcplusg 17204 MndHom cmhm 18709 mulGrpcmgp 20035 Unitcui 20253 ℂfldccnfld 21234 ℤ/nℤczn 21363 DChrcdchr 27080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-ec 8711 df-qs 8715 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-0g 17394 df-imas 17461 df-qus 17462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-nsg 19047 df-eqg 19048 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-subrng 20442 df-subrg 20467 df-lmod 20704 df-lss 20775 df-lsp 20815 df-sra 21017 df-rgmod 21018 df-lidl 21063 df-rsp 21064 df-2idl 21103 df-cnfld 21235 df-zring 21308 df-zn 21367 df-dchr 27081 |
This theorem is referenced by: dchrabl 27102 dchr1 27105 |
Copyright terms: Public domain | W3C validator |