MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmullid Structured version   Visualization version   GIF version

Theorem dchrmullid 27215
Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrn0.b 𝐵 = (Base‘𝑍)
dchrn0.u 𝑈 = (Unit‘𝑍)
dchr1cl.o 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
dchrmullid.t · = (+g𝐺)
dchrmullid.x (𝜑𝑋𝐷)
Assertion
Ref Expression
dchrmullid (𝜑 → ( 1 · 𝑋) = 𝑋)
Distinct variable groups:   𝐵,𝑘   𝑈,𝑘   𝑘,𝑁   𝜑,𝑘   𝑘,𝑋   𝑘,𝑍
Allowed substitution hints:   𝐷(𝑘)   · (𝑘)   1 (𝑘)   𝐺(𝑘)

Proof of Theorem dchrmullid
StepHypRef Expression
1 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
4 dchrmullid.t . . 3 · = (+g𝐺)
5 dchrn0.b . . . 4 𝐵 = (Base‘𝑍)
6 dchrn0.u . . . 4 𝑈 = (Unit‘𝑍)
7 dchr1cl.o . . . 4 1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0))
8 dchrmullid.x . . . . 5 (𝜑𝑋𝐷)
91, 3dchrrcl 27203 . . . . 5 (𝑋𝐷𝑁 ∈ ℕ)
108, 9syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
111, 2, 3, 5, 6, 7, 10dchr1cl 27214 . . 3 (𝜑1𝐷)
121, 2, 3, 4, 11, 8dchrmul 27211 . 2 (𝜑 → ( 1 · 𝑋) = ( 1f · 𝑋))
13 oveq1 7412 . . . . . 6 (1 = if(𝑘𝑈, 1, 0) → (1 · (𝑋𝑘)) = (if(𝑘𝑈, 1, 0) · (𝑋𝑘)))
1413eqeq1d 2737 . . . . 5 (1 = if(𝑘𝑈, 1, 0) → ((1 · (𝑋𝑘)) = (𝑋𝑘) ↔ (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘)))
15 oveq1 7412 . . . . . 6 (0 = if(𝑘𝑈, 1, 0) → (0 · (𝑋𝑘)) = (if(𝑘𝑈, 1, 0) · (𝑋𝑘)))
1615eqeq1d 2737 . . . . 5 (0 = if(𝑘𝑈, 1, 0) → ((0 · (𝑋𝑘)) = (𝑋𝑘) ↔ (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘)))
171, 2, 3, 5, 8dchrf 27205 . . . . . . . 8 (𝜑𝑋:𝐵⟶ℂ)
1817ffvelcdmda 7074 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑋𝑘) ∈ ℂ)
1918adantr 480 . . . . . 6 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (𝑋𝑘) ∈ ℂ)
2019mullidd 11253 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑘𝑈) → (1 · (𝑋𝑘)) = (𝑋𝑘))
21 0cn 11227 . . . . . . 7 0 ∈ ℂ
2221mul02i 11424 . . . . . 6 (0 · 0) = 0
231, 2, 5, 6, 10, 3dchrelbas2 27200 . . . . . . . . . . . 12 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈))))
248, 23mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈)))
2524simprd 495 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐵 ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
2625r19.21bi 3234 . . . . . . . . 9 ((𝜑𝑘𝐵) → ((𝑋𝑘) ≠ 0 → 𝑘𝑈))
2726necon1bd 2950 . . . . . . . 8 ((𝜑𝑘𝐵) → (¬ 𝑘𝑈 → (𝑋𝑘) = 0))
2827imp 406 . . . . . . 7 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (𝑋𝑘) = 0)
2928oveq2d 7421 . . . . . 6 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (0 · (𝑋𝑘)) = (0 · 0))
3022, 29, 283eqtr4a 2796 . . . . 5 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝑈) → (0 · (𝑋𝑘)) = (𝑋𝑘))
3114, 16, 20, 30ifbothda 4539 . . . 4 ((𝜑𝑘𝐵) → (if(𝑘𝑈, 1, 0) · (𝑋𝑘)) = (𝑋𝑘))
3231mpteq2dva 5214 . . 3 (𝜑 → (𝑘𝐵 ↦ (if(𝑘𝑈, 1, 0) · (𝑋𝑘))) = (𝑘𝐵 ↦ (𝑋𝑘)))
335fvexi 6890 . . . . 5 𝐵 ∈ V
3433a1i 11 . . . 4 (𝜑𝐵 ∈ V)
35 ax-1cn 11187 . . . . . 6 1 ∈ ℂ
3635, 21ifcli 4548 . . . . 5 if(𝑘𝑈, 1, 0) ∈ ℂ
3736a1i 11 . . . 4 ((𝜑𝑘𝐵) → if(𝑘𝑈, 1, 0) ∈ ℂ)
387a1i 11 . . . 4 (𝜑1 = (𝑘𝐵 ↦ if(𝑘𝑈, 1, 0)))
3917feqmptd 6947 . . . 4 (𝜑𝑋 = (𝑘𝐵 ↦ (𝑋𝑘)))
4034, 37, 18, 38, 39offval2 7691 . . 3 (𝜑 → ( 1f · 𝑋) = (𝑘𝐵 ↦ (if(𝑘𝑈, 1, 0) · (𝑋𝑘))))
4132, 40, 393eqtr4d 2780 . 2 (𝜑 → ( 1f · 𝑋) = 𝑋)
4212, 41eqtrd 2770 1 (𝜑 → ( 1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  ifcif 4500  cmpt 5201  cfv 6531  (class class class)co 7405  f cof 7669  cc 11127  0cc0 11129  1c1 11130   · cmul 11134  cn 12240  Basecbs 17228  +gcplusg 17271   MndHom cmhm 18759  mulGrpcmgp 20100  Unitcui 20315  fldccnfld 21315  ℤ/nczn 21463  DChrcdchr 27195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-imas 17522  df-qus 17523  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-nsg 19107  df-eqg 19108  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-cnfld 21316  df-zring 21408  df-zn 21467  df-dchr 27196
This theorem is referenced by:  dchrabl  27217  dchr1  27220
  Copyright terms: Public domain W3C validator