| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrmullid | Structured version Visualization version GIF version | ||
| Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| Ref | Expression |
|---|---|
| dchrmhm.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrmhm.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| dchrmhm.b | ⊢ 𝐷 = (Base‘𝐺) |
| dchrn0.b | ⊢ 𝐵 = (Base‘𝑍) |
| dchrn0.u | ⊢ 𝑈 = (Unit‘𝑍) |
| dchr1cl.o | ⊢ 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0)) |
| dchrmullid.t | ⊢ · = (+g‘𝐺) |
| dchrmullid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| dchrmullid | ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dchrmhm.g | . . 3 ⊢ 𝐺 = (DChr‘𝑁) | |
| 2 | dchrmhm.z | . . 3 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 3 | dchrmhm.b | . . 3 ⊢ 𝐷 = (Base‘𝐺) | |
| 4 | dchrmullid.t | . . 3 ⊢ · = (+g‘𝐺) | |
| 5 | dchrn0.b | . . . 4 ⊢ 𝐵 = (Base‘𝑍) | |
| 6 | dchrn0.u | . . . 4 ⊢ 𝑈 = (Unit‘𝑍) | |
| 7 | dchr1cl.o | . . . 4 ⊢ 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0)) | |
| 8 | dchrmullid.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 9 | 1, 3 | dchrrcl 27157 | . . . . 5 ⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 11 | 1, 2, 3, 5, 6, 7, 10 | dchr1cl 27168 | . . 3 ⊢ (𝜑 → 1 ∈ 𝐷) |
| 12 | 1, 2, 3, 4, 11, 8 | dchrmul 27165 | . 2 ⊢ (𝜑 → ( 1 · 𝑋) = ( 1 ∘f · 𝑋)) |
| 13 | oveq1 7396 | . . . . . 6 ⊢ (1 = if(𝑘 ∈ 𝑈, 1, 0) → (1 · (𝑋‘𝑘)) = (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘))) | |
| 14 | 13 | eqeq1d 2732 | . . . . 5 ⊢ (1 = if(𝑘 ∈ 𝑈, 1, 0) → ((1 · (𝑋‘𝑘)) = (𝑋‘𝑘) ↔ (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘)) = (𝑋‘𝑘))) |
| 15 | oveq1 7396 | . . . . . 6 ⊢ (0 = if(𝑘 ∈ 𝑈, 1, 0) → (0 · (𝑋‘𝑘)) = (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘))) | |
| 16 | 15 | eqeq1d 2732 | . . . . 5 ⊢ (0 = if(𝑘 ∈ 𝑈, 1, 0) → ((0 · (𝑋‘𝑘)) = (𝑋‘𝑘) ↔ (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘)) = (𝑋‘𝑘))) |
| 17 | 1, 2, 3, 5, 8 | dchrf 27159 | . . . . . . . 8 ⊢ (𝜑 → 𝑋:𝐵⟶ℂ) |
| 18 | 17 | ffvelcdmda 7058 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑋‘𝑘) ∈ ℂ) |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝑈) → (𝑋‘𝑘) ∈ ℂ) |
| 20 | 19 | mullidd 11198 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝑈) → (1 · (𝑋‘𝑘)) = (𝑋‘𝑘)) |
| 21 | 0cn 11172 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
| 22 | 21 | mul02i 11369 | . . . . . 6 ⊢ (0 · 0) = 0 |
| 23 | 1, 2, 5, 6, 10, 3 | dchrelbas2 27154 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑋 ∈ 𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘 ∈ 𝐵 ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)))) |
| 24 | 8, 23 | mpbid 232 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑘 ∈ 𝐵 ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈))) |
| 25 | 24 | simprd 495 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑘 ∈ 𝐵 ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
| 26 | 25 | r19.21bi 3230 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑋‘𝑘) ≠ 0 → 𝑘 ∈ 𝑈)) |
| 27 | 26 | necon1bd 2944 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (¬ 𝑘 ∈ 𝑈 → (𝑋‘𝑘) = 0)) |
| 28 | 27 | imp 406 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝑈) → (𝑋‘𝑘) = 0) |
| 29 | 28 | oveq2d 7405 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝑈) → (0 · (𝑋‘𝑘)) = (0 · 0)) |
| 30 | 22, 29, 28 | 3eqtr4a 2791 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝑈) → (0 · (𝑋‘𝑘)) = (𝑋‘𝑘)) |
| 31 | 14, 16, 20, 30 | ifbothda 4529 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘)) = (𝑋‘𝑘)) |
| 32 | 31 | mpteq2dva 5202 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘))) = (𝑘 ∈ 𝐵 ↦ (𝑋‘𝑘))) |
| 33 | 5 | fvexi 6874 | . . . . 5 ⊢ 𝐵 ∈ V |
| 34 | 33 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
| 35 | ax-1cn 11132 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 36 | 35, 21 | ifcli 4538 | . . . . 5 ⊢ if(𝑘 ∈ 𝑈, 1, 0) ∈ ℂ |
| 37 | 36 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → if(𝑘 ∈ 𝑈, 1, 0) ∈ ℂ) |
| 38 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → 1 = (𝑘 ∈ 𝐵 ↦ if(𝑘 ∈ 𝑈, 1, 0))) |
| 39 | 17 | feqmptd 6931 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑘 ∈ 𝐵 ↦ (𝑋‘𝑘))) |
| 40 | 34, 37, 18, 38, 39 | offval2 7675 | . . 3 ⊢ (𝜑 → ( 1 ∘f · 𝑋) = (𝑘 ∈ 𝐵 ↦ (if(𝑘 ∈ 𝑈, 1, 0) · (𝑋‘𝑘)))) |
| 41 | 32, 40, 39 | 3eqtr4d 2775 | . 2 ⊢ (𝜑 → ( 1 ∘f · 𝑋) = 𝑋) |
| 42 | 12, 41 | eqtrd 2765 | 1 ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 Vcvv 3450 ifcif 4490 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 ∘f cof 7653 ℂcc 11072 0cc0 11074 1c1 11075 · cmul 11079 ℕcn 12187 Basecbs 17185 +gcplusg 17226 MndHom cmhm 18714 mulGrpcmgp 20055 Unitcui 20270 ℂfldccnfld 21270 ℤ/nℤczn 21418 DChrcdchr 27149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-addf 11153 ax-mulf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-ec 8675 df-qs 8679 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17410 df-imas 17477 df-qus 17478 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-nsg 19062 df-eqg 19063 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-subrng 20461 df-subrg 20485 df-lmod 20774 df-lss 20844 df-lsp 20884 df-sra 21086 df-rgmod 21087 df-lidl 21124 df-rsp 21125 df-2idl 21166 df-cnfld 21271 df-zring 21363 df-zn 21422 df-dchr 27150 |
| This theorem is referenced by: dchrabl 27171 dchr1 27174 |
| Copyright terms: Public domain | W3C validator |