![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrmullid | Structured version Visualization version GIF version |
Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | β’ πΊ = (DChrβπ) |
dchrmhm.z | β’ π = (β€/nβ€βπ) |
dchrmhm.b | β’ π· = (BaseβπΊ) |
dchrn0.b | β’ π΅ = (Baseβπ) |
dchrn0.u | β’ π = (Unitβπ) |
dchr1cl.o | β’ 1 = (π β π΅ β¦ if(π β π, 1, 0)) |
dchrmullid.t | β’ Β· = (+gβπΊ) |
dchrmullid.x | β’ (π β π β π·) |
Ref | Expression |
---|---|
dchrmullid | β’ (π β ( 1 Β· π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrmhm.g | . . 3 β’ πΊ = (DChrβπ) | |
2 | dchrmhm.z | . . 3 β’ π = (β€/nβ€βπ) | |
3 | dchrmhm.b | . . 3 β’ π· = (BaseβπΊ) | |
4 | dchrmullid.t | . . 3 β’ Β· = (+gβπΊ) | |
5 | dchrn0.b | . . . 4 β’ π΅ = (Baseβπ) | |
6 | dchrn0.u | . . . 4 β’ π = (Unitβπ) | |
7 | dchr1cl.o | . . . 4 β’ 1 = (π β π΅ β¦ if(π β π, 1, 0)) | |
8 | dchrmullid.x | . . . . 5 β’ (π β π β π·) | |
9 | 1, 3 | dchrrcl 27128 | . . . . 5 β’ (π β π· β π β β) |
10 | 8, 9 | syl 17 | . . . 4 β’ (π β π β β) |
11 | 1, 2, 3, 5, 6, 7, 10 | dchr1cl 27139 | . . 3 β’ (π β 1 β π·) |
12 | 1, 2, 3, 4, 11, 8 | dchrmul 27136 | . 2 β’ (π β ( 1 Β· π) = ( 1 βf Β· π)) |
13 | oveq1 7412 | . . . . . 6 β’ (1 = if(π β π, 1, 0) β (1 Β· (πβπ)) = (if(π β π, 1, 0) Β· (πβπ))) | |
14 | 13 | eqeq1d 2728 | . . . . 5 β’ (1 = if(π β π, 1, 0) β ((1 Β· (πβπ)) = (πβπ) β (if(π β π, 1, 0) Β· (πβπ)) = (πβπ))) |
15 | oveq1 7412 | . . . . . 6 β’ (0 = if(π β π, 1, 0) β (0 Β· (πβπ)) = (if(π β π, 1, 0) Β· (πβπ))) | |
16 | 15 | eqeq1d 2728 | . . . . 5 β’ (0 = if(π β π, 1, 0) β ((0 Β· (πβπ)) = (πβπ) β (if(π β π, 1, 0) Β· (πβπ)) = (πβπ))) |
17 | 1, 2, 3, 5, 8 | dchrf 27130 | . . . . . . . 8 β’ (π β π:π΅βΆβ) |
18 | 17 | ffvelcdmda 7080 | . . . . . . 7 β’ ((π β§ π β π΅) β (πβπ) β β) |
19 | 18 | adantr 480 | . . . . . 6 β’ (((π β§ π β π΅) β§ π β π) β (πβπ) β β) |
20 | 19 | mullidd 11236 | . . . . 5 β’ (((π β§ π β π΅) β§ π β π) β (1 Β· (πβπ)) = (πβπ)) |
21 | 0cn 11210 | . . . . . . 7 β’ 0 β β | |
22 | 21 | mul02i 11407 | . . . . . 6 β’ (0 Β· 0) = 0 |
23 | 1, 2, 5, 6, 10, 3 | dchrelbas2 27125 | . . . . . . . . . . . 12 β’ (π β (π β π· β (π β ((mulGrpβπ) MndHom (mulGrpββfld)) β§ βπ β π΅ ((πβπ) β 0 β π β π)))) |
24 | 8, 23 | mpbid 231 | . . . . . . . . . . 11 β’ (π β (π β ((mulGrpβπ) MndHom (mulGrpββfld)) β§ βπ β π΅ ((πβπ) β 0 β π β π))) |
25 | 24 | simprd 495 | . . . . . . . . . 10 β’ (π β βπ β π΅ ((πβπ) β 0 β π β π)) |
26 | 25 | r19.21bi 3242 | . . . . . . . . 9 β’ ((π β§ π β π΅) β ((πβπ) β 0 β π β π)) |
27 | 26 | necon1bd 2952 | . . . . . . . 8 β’ ((π β§ π β π΅) β (Β¬ π β π β (πβπ) = 0)) |
28 | 27 | imp 406 | . . . . . . 7 β’ (((π β§ π β π΅) β§ Β¬ π β π) β (πβπ) = 0) |
29 | 28 | oveq2d 7421 | . . . . . 6 β’ (((π β§ π β π΅) β§ Β¬ π β π) β (0 Β· (πβπ)) = (0 Β· 0)) |
30 | 22, 29, 28 | 3eqtr4a 2792 | . . . . 5 β’ (((π β§ π β π΅) β§ Β¬ π β π) β (0 Β· (πβπ)) = (πβπ)) |
31 | 14, 16, 20, 30 | ifbothda 4561 | . . . 4 β’ ((π β§ π β π΅) β (if(π β π, 1, 0) Β· (πβπ)) = (πβπ)) |
32 | 31 | mpteq2dva 5241 | . . 3 β’ (π β (π β π΅ β¦ (if(π β π, 1, 0) Β· (πβπ))) = (π β π΅ β¦ (πβπ))) |
33 | 5 | fvexi 6899 | . . . . 5 β’ π΅ β V |
34 | 33 | a1i 11 | . . . 4 β’ (π β π΅ β V) |
35 | ax-1cn 11170 | . . . . . 6 β’ 1 β β | |
36 | 35, 21 | ifcli 4570 | . . . . 5 β’ if(π β π, 1, 0) β β |
37 | 36 | a1i 11 | . . . 4 β’ ((π β§ π β π΅) β if(π β π, 1, 0) β β) |
38 | 7 | a1i 11 | . . . 4 β’ (π β 1 = (π β π΅ β¦ if(π β π, 1, 0))) |
39 | 17 | feqmptd 6954 | . . . 4 β’ (π β π = (π β π΅ β¦ (πβπ))) |
40 | 34, 37, 18, 38, 39 | offval2 7687 | . . 3 β’ (π β ( 1 βf Β· π) = (π β π΅ β¦ (if(π β π, 1, 0) Β· (πβπ)))) |
41 | 32, 40, 39 | 3eqtr4d 2776 | . 2 β’ (π β ( 1 βf Β· π) = π) |
42 | 12, 41 | eqtrd 2766 | 1 β’ (π β ( 1 Β· π) = π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 βwral 3055 Vcvv 3468 ifcif 4523 β¦ cmpt 5224 βcfv 6537 (class class class)co 7405 βf cof 7665 βcc 11110 0cc0 11112 1c1 11113 Β· cmul 11117 βcn 12216 Basecbs 17153 +gcplusg 17206 MndHom cmhm 18711 mulGrpcmgp 20039 Unitcui 20257 βfldccnfld 21240 β€/nβ€czn 21389 DChrcdchr 27120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-ec 8707 df-qs 8711 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-0g 17396 df-imas 17463 df-qus 17464 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-grp 18866 df-minusg 18867 df-sbg 18868 df-subg 19050 df-nsg 19051 df-eqg 19052 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-cring 20141 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-subrng 20446 df-subrg 20471 df-lmod 20708 df-lss 20779 df-lsp 20819 df-sra 21021 df-rgmod 21022 df-lidl 21067 df-rsp 21068 df-2idl 21107 df-cnfld 21241 df-zring 21334 df-zn 21393 df-dchr 27121 |
This theorem is referenced by: dchrabl 27142 dchr1 27145 |
Copyright terms: Public domain | W3C validator |