![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrmullid | Structured version Visualization version GIF version |
Description: Left identity for the principal Dirichlet character. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
dchrmhm.g | β’ πΊ = (DChrβπ) |
dchrmhm.z | β’ π = (β€/nβ€βπ) |
dchrmhm.b | β’ π· = (BaseβπΊ) |
dchrn0.b | β’ π΅ = (Baseβπ) |
dchrn0.u | β’ π = (Unitβπ) |
dchr1cl.o | β’ 1 = (π β π΅ β¦ if(π β π, 1, 0)) |
dchrmullid.t | β’ Β· = (+gβπΊ) |
dchrmullid.x | β’ (π β π β π·) |
Ref | Expression |
---|---|
dchrmullid | β’ (π β ( 1 Β· π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrmhm.g | . . 3 β’ πΊ = (DChrβπ) | |
2 | dchrmhm.z | . . 3 β’ π = (β€/nβ€βπ) | |
3 | dchrmhm.b | . . 3 β’ π· = (BaseβπΊ) | |
4 | dchrmullid.t | . . 3 β’ Β· = (+gβπΊ) | |
5 | dchrn0.b | . . . 4 β’ π΅ = (Baseβπ) | |
6 | dchrn0.u | . . . 4 β’ π = (Unitβπ) | |
7 | dchr1cl.o | . . . 4 β’ 1 = (π β π΅ β¦ if(π β π, 1, 0)) | |
8 | dchrmullid.x | . . . . 5 β’ (π β π β π·) | |
9 | 1, 3 | dchrrcl 26740 | . . . . 5 β’ (π β π· β π β β) |
10 | 8, 9 | syl 17 | . . . 4 β’ (π β π β β) |
11 | 1, 2, 3, 5, 6, 7, 10 | dchr1cl 26751 | . . 3 β’ (π β 1 β π·) |
12 | 1, 2, 3, 4, 11, 8 | dchrmul 26748 | . 2 β’ (π β ( 1 Β· π) = ( 1 βf Β· π)) |
13 | oveq1 7415 | . . . . . 6 β’ (1 = if(π β π, 1, 0) β (1 Β· (πβπ)) = (if(π β π, 1, 0) Β· (πβπ))) | |
14 | 13 | eqeq1d 2734 | . . . . 5 β’ (1 = if(π β π, 1, 0) β ((1 Β· (πβπ)) = (πβπ) β (if(π β π, 1, 0) Β· (πβπ)) = (πβπ))) |
15 | oveq1 7415 | . . . . . 6 β’ (0 = if(π β π, 1, 0) β (0 Β· (πβπ)) = (if(π β π, 1, 0) Β· (πβπ))) | |
16 | 15 | eqeq1d 2734 | . . . . 5 β’ (0 = if(π β π, 1, 0) β ((0 Β· (πβπ)) = (πβπ) β (if(π β π, 1, 0) Β· (πβπ)) = (πβπ))) |
17 | 1, 2, 3, 5, 8 | dchrf 26742 | . . . . . . . 8 β’ (π β π:π΅βΆβ) |
18 | 17 | ffvelcdmda 7086 | . . . . . . 7 β’ ((π β§ π β π΅) β (πβπ) β β) |
19 | 18 | adantr 481 | . . . . . 6 β’ (((π β§ π β π΅) β§ π β π) β (πβπ) β β) |
20 | 19 | mullidd 11231 | . . . . 5 β’ (((π β§ π β π΅) β§ π β π) β (1 Β· (πβπ)) = (πβπ)) |
21 | 0cn 11205 | . . . . . . 7 β’ 0 β β | |
22 | 21 | mul02i 11402 | . . . . . 6 β’ (0 Β· 0) = 0 |
23 | 1, 2, 5, 6, 10, 3 | dchrelbas2 26737 | . . . . . . . . . . . 12 β’ (π β (π β π· β (π β ((mulGrpβπ) MndHom (mulGrpββfld)) β§ βπ β π΅ ((πβπ) β 0 β π β π)))) |
24 | 8, 23 | mpbid 231 | . . . . . . . . . . 11 β’ (π β (π β ((mulGrpβπ) MndHom (mulGrpββfld)) β§ βπ β π΅ ((πβπ) β 0 β π β π))) |
25 | 24 | simprd 496 | . . . . . . . . . 10 β’ (π β βπ β π΅ ((πβπ) β 0 β π β π)) |
26 | 25 | r19.21bi 3248 | . . . . . . . . 9 β’ ((π β§ π β π΅) β ((πβπ) β 0 β π β π)) |
27 | 26 | necon1bd 2958 | . . . . . . . 8 β’ ((π β§ π β π΅) β (Β¬ π β π β (πβπ) = 0)) |
28 | 27 | imp 407 | . . . . . . 7 β’ (((π β§ π β π΅) β§ Β¬ π β π) β (πβπ) = 0) |
29 | 28 | oveq2d 7424 | . . . . . 6 β’ (((π β§ π β π΅) β§ Β¬ π β π) β (0 Β· (πβπ)) = (0 Β· 0)) |
30 | 22, 29, 28 | 3eqtr4a 2798 | . . . . 5 β’ (((π β§ π β π΅) β§ Β¬ π β π) β (0 Β· (πβπ)) = (πβπ)) |
31 | 14, 16, 20, 30 | ifbothda 4566 | . . . 4 β’ ((π β§ π β π΅) β (if(π β π, 1, 0) Β· (πβπ)) = (πβπ)) |
32 | 31 | mpteq2dva 5248 | . . 3 β’ (π β (π β π΅ β¦ (if(π β π, 1, 0) Β· (πβπ))) = (π β π΅ β¦ (πβπ))) |
33 | 5 | fvexi 6905 | . . . . 5 β’ π΅ β V |
34 | 33 | a1i 11 | . . . 4 β’ (π β π΅ β V) |
35 | ax-1cn 11167 | . . . . . 6 β’ 1 β β | |
36 | 35, 21 | ifcli 4575 | . . . . 5 β’ if(π β π, 1, 0) β β |
37 | 36 | a1i 11 | . . . 4 β’ ((π β§ π β π΅) β if(π β π, 1, 0) β β) |
38 | 7 | a1i 11 | . . . 4 β’ (π β 1 = (π β π΅ β¦ if(π β π, 1, 0))) |
39 | 17 | feqmptd 6960 | . . . 4 β’ (π β π = (π β π΅ β¦ (πβπ))) |
40 | 34, 37, 18, 38, 39 | offval2 7689 | . . 3 β’ (π β ( 1 βf Β· π) = (π β π΅ β¦ (if(π β π, 1, 0) Β· (πβπ)))) |
41 | 32, 40, 39 | 3eqtr4d 2782 | . 2 β’ (π β ( 1 βf Β· π) = π) |
42 | 12, 41 | eqtrd 2772 | 1 β’ (π β ( 1 Β· π) = π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 Vcvv 3474 ifcif 4528 β¦ cmpt 5231 βcfv 6543 (class class class)co 7408 βf cof 7667 βcc 11107 0cc0 11109 1c1 11110 Β· cmul 11114 βcn 12211 Basecbs 17143 +gcplusg 17196 MndHom cmhm 18668 mulGrpcmgp 19986 Unitcui 20168 βfldccnfld 20943 β€/nβ€czn 21051 DChrcdchr 26732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-ec 8704 df-qs 8708 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-imas 17453 df-qus 17454 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-grp 18821 df-minusg 18822 df-sbg 18823 df-subg 19002 df-nsg 19003 df-eqg 19004 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-subrg 20316 df-lmod 20472 df-lss 20542 df-lsp 20582 df-sra 20784 df-rgmod 20785 df-lidl 20786 df-rsp 20787 df-2idl 20856 df-cnfld 20944 df-zring 21017 df-zn 21055 df-dchr 26733 |
This theorem is referenced by: dchrabl 26754 dchr1 26757 |
Copyright terms: Public domain | W3C validator |