![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fullres2c | Structured version Visualization version GIF version |
Description: Condition for a full functor to also be a full functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017.) |
Ref | Expression |
---|---|
ffthres2c.a | ⊢ 𝐴 = (Base‘𝐶) |
ffthres2c.e | ⊢ 𝐸 = (𝐷 ↾s 𝑆) |
ffthres2c.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
ffthres2c.r | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
ffthres2c.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
Ref | Expression |
---|---|
fullres2c | ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ 𝐹(𝐶 Full 𝐸)𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffthres2c.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
2 | ffthres2c.e | . . . 4 ⊢ 𝐸 = (𝐷 ↾s 𝑆) | |
3 | ffthres2c.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
4 | ffthres2c.r | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
5 | ffthres2c.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
6 | 1, 2, 3, 4, 5 | funcres2c 17848 | . . 3 ⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ 𝐹(𝐶 Func 𝐸)𝐺)) |
7 | eqid 2732 | . . . . . . . 8 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
8 | 2, 7 | resshom 17360 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → (Hom ‘𝐷) = (Hom ‘𝐸)) |
9 | 4, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Hom ‘𝐷) = (Hom ‘𝐸)) |
10 | 9 | oveqd 7422 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
11 | 10 | eqeq2d 2743 | . . . 4 ⊢ (𝜑 → (ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
12 | 11 | 2ralbidv 3218 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
13 | 6, 12 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) ↔ (𝐹(𝐶 Func 𝐸)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))))) |
14 | 1, 7 | isfull 17857 | . 2 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
15 | eqid 2732 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
16 | 1, 15 | isfull 17857 | . 2 ⊢ (𝐹(𝐶 Full 𝐸)𝐺 ↔ (𝐹(𝐶 Func 𝐸)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
17 | 13, 14, 16 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ 𝐹(𝐶 Full 𝐸)𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 class class class wbr 5147 ran crn 5676 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 ↾s cress 17169 Hom chom 17204 Catccat 17604 Func cfunc 17800 Full cful 17849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-hom 17217 df-cco 17218 df-cat 17608 df-cid 17609 df-homf 17610 df-comf 17611 df-ssc 17753 df-resc 17754 df-subc 17755 df-func 17804 df-full 17851 |
This theorem is referenced by: ffthres2c 17887 |
Copyright terms: Public domain | W3C validator |