![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fullres2c | Structured version Visualization version GIF version |
Description: Condition for a full functor to also be a full functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017.) |
Ref | Expression |
---|---|
ffthres2c.a | ⊢ 𝐴 = (Base‘𝐶) |
ffthres2c.e | ⊢ 𝐸 = (𝐷 ↾s 𝑆) |
ffthres2c.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
ffthres2c.r | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
ffthres2c.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
Ref | Expression |
---|---|
fullres2c | ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ 𝐹(𝐶 Full 𝐸)𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffthres2c.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
2 | ffthres2c.e | . . . 4 ⊢ 𝐸 = (𝐷 ↾s 𝑆) | |
3 | ffthres2c.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
4 | ffthres2c.r | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
5 | ffthres2c.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
6 | 1, 2, 3, 4, 5 | funcres2c 17694 | . . 3 ⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ 𝐹(𝐶 Func 𝐸)𝐺)) |
7 | eqid 2737 | . . . . . . . 8 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
8 | 2, 7 | resshom 17206 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → (Hom ‘𝐷) = (Hom ‘𝐸)) |
9 | 4, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Hom ‘𝐷) = (Hom ‘𝐸)) |
10 | 9 | oveqd 7334 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
11 | 10 | eqeq2d 2748 | . . . 4 ⊢ (𝜑 → (ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
12 | 11 | 2ralbidv 3209 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
13 | 6, 12 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) ↔ (𝐹(𝐶 Func 𝐸)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))))) |
14 | 1, 7 | isfull 17703 | . 2 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
15 | eqid 2737 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
16 | 1, 15 | isfull 17703 | . 2 ⊢ (𝐹(𝐶 Full 𝐸)𝐺 ↔ (𝐹(𝐶 Func 𝐸)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
17 | 13, 14, 16 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ 𝐹(𝐶 Full 𝐸)𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 class class class wbr 5087 ran crn 5609 ⟶wf 6462 ‘cfv 6466 (class class class)co 7317 Basecbs 16989 ↾s cress 17018 Hom chom 17050 Catccat 17450 Func cfunc 17646 Full cful 17695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-map 8667 df-pm 8668 df-ixp 8736 df-en 8784 df-dom 8785 df-sdom 8786 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-9 12123 df-n0 12314 df-z 12400 df-dec 12518 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-hom 17063 df-cco 17064 df-cat 17454 df-cid 17455 df-homf 17456 df-comf 17457 df-ssc 17599 df-resc 17600 df-subc 17601 df-func 17650 df-full 17697 |
This theorem is referenced by: ffthres2c 17733 |
Copyright terms: Public domain | W3C validator |