![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fullres2c | Structured version Visualization version GIF version |
Description: Condition for a full functor to also be a full functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017.) |
Ref | Expression |
---|---|
ffthres2c.a | ⊢ 𝐴 = (Base‘𝐶) |
ffthres2c.e | ⊢ 𝐸 = (𝐷 ↾s 𝑆) |
ffthres2c.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
ffthres2c.r | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
ffthres2c.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
Ref | Expression |
---|---|
fullres2c | ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ 𝐹(𝐶 Full 𝐸)𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffthres2c.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
2 | ffthres2c.e | . . . 4 ⊢ 𝐸 = (𝐷 ↾s 𝑆) | |
3 | ffthres2c.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
4 | ffthres2c.r | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
5 | ffthres2c.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
6 | 1, 2, 3, 4, 5 | funcres2c 16768 | . . 3 ⊢ (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺 ↔ 𝐹(𝐶 Func 𝐸)𝐺)) |
7 | eqid 2771 | . . . . . . . 8 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
8 | 2, 7 | resshom 16286 | . . . . . . 7 ⊢ (𝑆 ∈ 𝑉 → (Hom ‘𝐷) = (Hom ‘𝐸)) |
9 | 4, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Hom ‘𝐷) = (Hom ‘𝐸)) |
10 | 9 | oveqd 6813 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))) |
11 | 10 | eqeq2d 2781 | . . . 4 ⊢ (𝜑 → (ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
12 | 11 | 2ralbidv 3138 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
13 | 6, 12 | anbi12d 616 | . 2 ⊢ (𝜑 → ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) ↔ (𝐹(𝐶 Func 𝐸)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦))))) |
14 | 1, 7 | isfull 16777 | . 2 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦)))) |
15 | eqid 2771 | . . 3 ⊢ (Hom ‘𝐸) = (Hom ‘𝐸) | |
16 | 1, 15 | isfull 16777 | . 2 ⊢ (𝐹(𝐶 Full 𝐸)𝐺 ↔ (𝐹(𝐶 Func 𝐸)𝐺 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ran (𝑥𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝐸)(𝐹‘𝑦)))) |
17 | 13, 14, 16 | 3bitr4g 303 | 1 ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ 𝐹(𝐶 Full 𝐸)𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 class class class wbr 4787 ran crn 5251 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 ↾s cress 16065 Hom chom 16160 Catccat 16532 Func cfunc 16721 Full cful 16769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-map 8015 df-pm 8016 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-hom 16174 df-cco 16175 df-cat 16536 df-cid 16537 df-homf 16538 df-comf 16539 df-ssc 16677 df-resc 16678 df-subc 16679 df-func 16725 df-full 16771 |
This theorem is referenced by: ffthres2c 16807 |
Copyright terms: Public domain | W3C validator |