MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullres2c Structured version   Visualization version   GIF version

Theorem fullres2c 17571
Description: Condition for a full functor to also be a full functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017.)
Hypotheses
Ref Expression
ffthres2c.a 𝐴 = (Base‘𝐶)
ffthres2c.e 𝐸 = (𝐷s 𝑆)
ffthres2c.d (𝜑𝐷 ∈ Cat)
ffthres2c.r (𝜑𝑆𝑉)
ffthres2c.1 (𝜑𝐹:𝐴𝑆)
Assertion
Ref Expression
fullres2c (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Full 𝐸)𝐺))

Proof of Theorem fullres2c
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffthres2c.a . . . 4 𝐴 = (Base‘𝐶)
2 ffthres2c.e . . . 4 𝐸 = (𝐷s 𝑆)
3 ffthres2c.d . . . 4 (𝜑𝐷 ∈ Cat)
4 ffthres2c.r . . . 4 (𝜑𝑆𝑉)
5 ffthres2c.1 . . . 4 (𝜑𝐹:𝐴𝑆)
61, 2, 3, 4, 5funcres2c 17533 . . 3 (𝜑 → (𝐹(𝐶 Func 𝐷)𝐺𝐹(𝐶 Func 𝐸)𝐺))
7 eqid 2738 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
82, 7resshom 17046 . . . . . . 7 (𝑆𝑉 → (Hom ‘𝐷) = (Hom ‘𝐸))
94, 8syl 17 . . . . . 6 (𝜑 → (Hom ‘𝐷) = (Hom ‘𝐸))
109oveqd 7272 . . . . 5 (𝜑 → ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) = ((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦)))
1110eqeq2d 2749 . . . 4 (𝜑 → (ran (𝑥𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ ran (𝑥𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦))))
12112ralbidv 3122 . . 3 (𝜑 → (∀𝑥𝐴𝑦𝐴 ran (𝑥𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 ran (𝑥𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦))))
136, 12anbi12d 630 . 2 (𝜑 → ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐴𝑦𝐴 ran (𝑥𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))) ↔ (𝐹(𝐶 Func 𝐸)𝐺 ∧ ∀𝑥𝐴𝑦𝐴 ran (𝑥𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦)))))
141, 7isfull 17542 . 2 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐴𝑦𝐴 ran (𝑥𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦))))
15 eqid 2738 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
161, 15isfull 17542 . 2 (𝐹(𝐶 Full 𝐸)𝐺 ↔ (𝐹(𝐶 Func 𝐸)𝐺 ∧ ∀𝑥𝐴𝑦𝐴 ran (𝑥𝐺𝑦) = ((𝐹𝑥)(Hom ‘𝐸)(𝐹𝑦))))
1713, 14, 163bitr4g 313 1 (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Full 𝐸)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  Hom chom 16899  Catccat 17290   Func cfunc 17485   Full cful 17534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-homf 17296  df-comf 17297  df-ssc 17439  df-resc 17440  df-subc 17441  df-func 17489  df-full 17536
This theorem is referenced by:  ffthres2c  17572
  Copyright terms: Public domain W3C validator