Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lanpropd Structured version   Visualization version   GIF version

Theorem lanpropd 49594
Description: If the categories have the same set of objects, morphisms, and compositions, then they have the same left Kan extensions. (Contributed by Zhi Wang, 21-Nov-2025.)
Hypotheses
Ref Expression
lanpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
lanpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
lanpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
lanpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
lanpropd.5 (𝜑 → (Homf𝐸) = (Homf𝐹))
lanpropd.6 (𝜑 → (compf𝐸) = (compf𝐹))
lanpropd.a (𝜑𝐴𝑉)
lanpropd.b (𝜑𝐵𝑉)
lanpropd.c (𝜑𝐶𝑉)
lanpropd.d (𝜑𝐷𝑉)
lanpropd.e (𝜑𝐸𝑉)
lanpropd.f (𝜑𝐹𝑉)
Assertion
Ref Expression
lanpropd (𝜑 → (⟨𝐴, 𝐶⟩ Lan 𝐸) = (⟨𝐵, 𝐷⟩ Lan 𝐹))

Proof of Theorem lanpropd
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lanpropd.1 . . . 4 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 lanpropd.2 . . . 4 (𝜑 → (compf𝐴) = (compf𝐵))
3 lanpropd.3 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 lanpropd.4 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
5 lanpropd.a . . . 4 (𝜑𝐴𝑉)
6 lanpropd.b . . . 4 (𝜑𝐵𝑉)
7 lanpropd.c . . . 4 (𝜑𝐶𝑉)
8 lanpropd.d . . . 4 (𝜑𝐷𝑉)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17870 . . 3 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
10 lanpropd.5 . . . . 5 (𝜑 → (Homf𝐸) = (Homf𝐹))
11 lanpropd.6 . . . . 5 (𝜑 → (compf𝐸) = (compf𝐹))
12 lanpropd.e . . . . 5 (𝜑𝐸𝑉)
13 lanpropd.f . . . . 5 (𝜑𝐹𝑉)
141, 2, 10, 11, 5, 6, 12, 13funcpropd 17870 . . . 4 (𝜑 → (𝐴 Func 𝐸) = (𝐵 Func 𝐹))
1514adantr 480 . . 3 ((𝜑𝑓 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐸) = (𝐵 Func 𝐹))
163adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (Homf𝐶) = (Homf𝐷))
174adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (compf𝐶) = (compf𝐷))
1810adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (Homf𝐸) = (Homf𝐹))
1911adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (compf𝐸) = (compf𝐹))
20 funcrcl 17831 . . . . . . . 8 (𝑓 ∈ (𝐴 Func 𝐶) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
2120ad2antrl 728 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 ∈ Cat ∧ 𝐶 ∈ Cat))
2221simprd 495 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐶 ∈ Cat)
238adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐷𝑉)
2416, 17, 22, 23catpropd 17676 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
2522, 24mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐷 ∈ Cat)
26 funcrcl 17831 . . . . . . . 8 (𝑥 ∈ (𝐴 Func 𝐸) → (𝐴 ∈ Cat ∧ 𝐸 ∈ Cat))
2726ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 ∈ Cat ∧ 𝐸 ∈ Cat))
2827simprd 495 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐸 ∈ Cat)
2913adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐹𝑉)
3018, 19, 28, 29catpropd 17676 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐸 ∈ Cat ↔ 𝐹 ∈ Cat))
3128, 30mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐹 ∈ Cat)
3216, 17, 18, 19, 22, 25, 28, 31fucpropd 17948 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐶 FuncCat 𝐸) = (𝐷 FuncCat 𝐹))
331adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (Homf𝐴) = (Homf𝐵))
342adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (compf𝐴) = (compf𝐵))
3521simpld 494 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐴 ∈ Cat)
366adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐵𝑉)
3733, 34, 35, 36catpropd 17676 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 ∈ Cat ↔ 𝐵 ∈ Cat))
3835, 37mpbid 232 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝐵 ∈ Cat)
3933, 34, 18, 19, 35, 38, 28, 31fucpropd 17948 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (𝐴 FuncCat 𝐸) = (𝐵 FuncCat 𝐹))
4032, 39oveq12d 7407 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → ((𝐶 FuncCat 𝐸) UP (𝐴 FuncCat 𝐸)) = ((𝐷 FuncCat 𝐹) UP (𝐵 FuncCat 𝐹)))
41 simprl 770 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝑓 ∈ (𝐴 Func 𝐶))
4216, 17, 18, 19, 22, 25, 28, 31, 41prcofpropd 49358 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → (⟨𝐶, 𝐸⟩ −∘F 𝑓) = (⟨𝐷, 𝐹⟩ −∘F 𝑓))
43 eqidd 2731 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → 𝑥 = 𝑥)
4440, 42, 43oveq123d 7410 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑥 ∈ (𝐴 Func 𝐸))) → ((⟨𝐶, 𝐸⟩ −∘F 𝑓)((𝐶 FuncCat 𝐸) UP (𝐴 FuncCat 𝐸))𝑥) = ((⟨𝐷, 𝐹⟩ −∘F 𝑓)((𝐷 FuncCat 𝐹) UP (𝐵 FuncCat 𝐹))𝑥))
459, 15, 44mpoeq123dva 7465 . 2 (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑥 ∈ (𝐴 Func 𝐸) ↦ ((⟨𝐶, 𝐸⟩ −∘F 𝑓)((𝐶 FuncCat 𝐸) UP (𝐴 FuncCat 𝐸))𝑥)) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑥 ∈ (𝐵 Func 𝐹) ↦ ((⟨𝐷, 𝐹⟩ −∘F 𝑓)((𝐷 FuncCat 𝐹) UP (𝐵 FuncCat 𝐹))𝑥)))
46 eqid 2730 . . 3 (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸)
47 eqid 2730 . . 3 (𝐴 FuncCat 𝐸) = (𝐴 FuncCat 𝐸)
4846, 47, 5, 7, 12lanfval 49592 . 2 (𝜑 → (⟨𝐴, 𝐶⟩ Lan 𝐸) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑥 ∈ (𝐴 Func 𝐸) ↦ ((⟨𝐶, 𝐸⟩ −∘F 𝑓)((𝐶 FuncCat 𝐸) UP (𝐴 FuncCat 𝐸))𝑥)))
49 eqid 2730 . . 3 (𝐷 FuncCat 𝐹) = (𝐷 FuncCat 𝐹)
50 eqid 2730 . . 3 (𝐵 FuncCat 𝐹) = (𝐵 FuncCat 𝐹)
5149, 50, 6, 8, 13lanfval 49592 . 2 (𝜑 → (⟨𝐵, 𝐷⟩ Lan 𝐹) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑥 ∈ (𝐵 Func 𝐹) ↦ ((⟨𝐷, 𝐹⟩ −∘F 𝑓)((𝐷 FuncCat 𝐹) UP (𝐵 FuncCat 𝐹))𝑥)))
5245, 48, 513eqtr4d 2775 1 (𝜑 → (⟨𝐴, 𝐶⟩ Lan 𝐸) = (⟨𝐵, 𝐷⟩ Lan 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4597  cfv 6513  (class class class)co 7389  cmpo 7391  Catccat 17631  Homf chomf 17633  compfccomf 17634   Func cfunc 17822   FuncCat cfuc 17913   UP cup 49152   −∘F cprcof 49352   Lan clan 49584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-cid 17636  df-homf 17637  df-comf 17638  df-func 17826  df-nat 17914  df-fuc 17915  df-prcof 49353  df-lan 49586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator