| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infssuzle | Structured version Visualization version GIF version | ||
| Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
| Ref | Expression |
|---|---|
| infssuzle | ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4292 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝑆 ≠ ∅) | |
| 2 | uzwo 12812 | . . 3 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆) → ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) |
| 4 | uzssz 12756 | . . . . 5 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 5 | zssre 12478 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
| 6 | 4, 5 | sstri 3945 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ ℝ |
| 7 | sstr 3944 | . . . 4 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ (ℤ≥‘𝑀) ⊆ ℝ) → 𝑆 ⊆ ℝ) | |
| 8 | 6, 7 | mpan2 691 | . . 3 ⊢ (𝑆 ⊆ (ℤ≥‘𝑀) → 𝑆 ⊆ ℝ) |
| 9 | lbinfle 12080 | . . . 4 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) | |
| 10 | 9 | 3com23 1126 | . . 3 ⊢ ((𝑆 ⊆ ℝ ∧ 𝐴 ∈ 𝑆 ∧ ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) → inf(𝑆, ℝ, < ) ≤ 𝐴) |
| 11 | 8, 10 | syl3an1 1163 | . 2 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆 ∧ ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) → inf(𝑆, ℝ, < ) ≤ 𝐴) |
| 12 | 3, 11 | mpd3an3 1464 | 1 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 ‘cfv 6482 infcinf 9331 ℝcr 11008 < clt 11149 ≤ cle 11150 ℤcz 12471 ℤ≥cuz 12735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 |
| This theorem is referenced by: zsupss 12838 uzwo3 12844 divalglem5 16308 bitsfzolem 16345 bezoutlem3 16452 lcmledvds 16510 lcmfledvds 16543 odzdvds 16707 4sqlem13 16869 4sqlem17 16873 ramcl2lem 16921 ramtub 16924 odlem2 19418 gexlem2 19461 zringlpirlem3 21371 ovolicc2lem4 25419 iundisj 25447 ig1peu 26078 ig1pdvds 26083 ftalem5 26985 iundisjf 32533 iundisjfi 32739 ig1pmindeg 33534 exsslsb 33563 dgraaub 43121 elaa2lem 46214 |
| Copyright terms: Public domain | W3C validator |