Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infssuzle | Structured version Visualization version GIF version |
Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.) |
Ref | Expression |
---|---|
infssuzle | ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4265 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝑆 ≠ ∅) | |
2 | uzwo 12580 | . . 3 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) | |
3 | 1, 2 | sylan2 592 | . 2 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆) → ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) |
4 | uzssz 12532 | . . . . 5 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
5 | zssre 12256 | . . . . 5 ⊢ ℤ ⊆ ℝ | |
6 | 4, 5 | sstri 3926 | . . . 4 ⊢ (ℤ≥‘𝑀) ⊆ ℝ |
7 | sstr 3925 | . . . 4 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ (ℤ≥‘𝑀) ⊆ ℝ) → 𝑆 ⊆ ℝ) | |
8 | 6, 7 | mpan2 687 | . . 3 ⊢ (𝑆 ⊆ (ℤ≥‘𝑀) → 𝑆 ⊆ ℝ) |
9 | lbinfle 11860 | . . . 4 ⊢ ((𝑆 ⊆ ℝ ∧ ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) | |
10 | 9 | 3com23 1124 | . . 3 ⊢ ((𝑆 ⊆ ℝ ∧ 𝐴 ∈ 𝑆 ∧ ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) → inf(𝑆, ℝ, < ) ≤ 𝐴) |
11 | 8, 10 | syl3an1 1161 | . 2 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆 ∧ ∃𝑗 ∈ 𝑆 ∀𝑘 ∈ 𝑆 𝑗 ≤ 𝑘) → inf(𝑆, ℝ, < ) ≤ 𝐴) |
12 | 3, 11 | mpd3an3 1460 | 1 ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ 𝐴 ∈ 𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 infcinf 9130 ℝcr 10801 < clt 10940 ≤ cle 10941 ℤcz 12249 ℤ≥cuz 12511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 |
This theorem is referenced by: zsupss 12606 uzwo3 12612 divalglem5 16034 bitsfzolem 16069 bezoutlem3 16177 lcmledvds 16232 lcmfledvds 16265 odzdvds 16424 4sqlem13 16586 4sqlem17 16590 ramcl2lem 16638 ramtub 16641 odlem2 19062 gexlem2 19102 zringlpirlem3 20598 ovolicc2lem4 24589 iundisj 24617 ig1peu 25241 ig1pdvds 25246 ftalem5 26131 iundisjf 30829 iundisjfi 31019 dgraaub 40889 elaa2lem 43664 |
Copyright terms: Public domain | W3C validator |