Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volico Structured version   Visualization version   GIF version

Theorem volico 46091
Description: The measure of left-closed, right-open interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
volico ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))

Proof of Theorem volico
StepHypRef Expression
1 rexr 11158 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
213ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
3 rexr 11158 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
433ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
5 simp3 1138 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
6 snunioo1 45622 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
72, 4, 5, 6syl3anc 1373 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵))
87eqcomd 2737 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴}))
98fveq2d 6826 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = (vol‘((𝐴(,)𝐵) ∪ {𝐴})))
10 ioombl 25493 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
1110a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol)
12 snmbl 46071 . . . . . . 7 (𝐴 ∈ ℝ → {𝐴} ∈ dom vol)
13123ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → {𝐴} ∈ dom vol)
14 lbioo 13276 . . . . . . . 8 ¬ 𝐴 ∈ (𝐴(,)𝐵)
15 disjsn 4661 . . . . . . . 8 (((𝐴(,)𝐵) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ (𝐴(,)𝐵))
1614, 15mpbir 231 . . . . . . 7 ((𝐴(,)𝐵) ∩ {𝐴}) = ∅
1716a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∩ {𝐴}) = ∅)
18 ioovolcl 25498 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
19183adant3 1132 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
20 volsn 46075 . . . . . . . 8 (𝐴 ∈ ℝ → (vol‘{𝐴}) = 0)
21 0red 11115 . . . . . . . 8 (𝐴 ∈ ℝ → 0 ∈ ℝ)
2220, 21eqeltrd 2831 . . . . . . 7 (𝐴 ∈ ℝ → (vol‘{𝐴}) ∈ ℝ)
23223ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘{𝐴}) ∈ ℝ)
24 volun 25473 . . . . . 6 ((((𝐴(,)𝐵) ∈ dom vol ∧ {𝐴} ∈ dom vol ∧ ((𝐴(,)𝐵) ∩ {𝐴}) = ∅) ∧ ((vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ (vol‘{𝐴}) ∈ ℝ)) → (vol‘((𝐴(,)𝐵) ∪ {𝐴})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴})))
2511, 13, 17, 19, 23, 24syl32anc 1380 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐴})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴})))
26 simp1 1136 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
27 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
2826, 27, 5ltled 11261 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴𝐵)
29 volioo 25497 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
3026, 27, 28, 29syl3anc 1373 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
31203ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘{𝐴}) = 0)
3230, 31oveq12d 7364 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴})) = ((𝐵𝐴) + 0))
3327recnd 11140 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
34 recn 11096 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
35343ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
3633, 35subcld 11472 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℂ)
3736addridd 11313 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐵𝐴) + 0) = (𝐵𝐴))
3832, 37eqtrd 2766 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴})) = (𝐵𝐴))
399, 25, 383eqtrd 2770 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = (𝐵𝐴))
40393expa 1118 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = (𝐵𝐴))
41 iftrue 4478 . . . 4 (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
4241adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
4340, 42eqtr4d 2769 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
44 simpl 482 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
45 simpr 484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
4644simprd 495 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
4744simpld 494 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
4846, 47lenltd 11259 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
4945, 48mpbird 257 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → 𝐵𝐴)
50 simpr 484 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵𝐴) → 𝐵𝐴)
511ad2antrr 726 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵𝐴) → 𝐴 ∈ ℝ*)
523ad2antlr 727 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵𝐴) → 𝐵 ∈ ℝ*)
53 ico0 13291 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
5451, 52, 53syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵𝐴) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
5550, 54mpbird 257 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵𝐴) → (𝐴[,)𝐵) = ∅)
5655fveq2d 6826 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵𝐴) → (vol‘(𝐴[,)𝐵)) = (vol‘∅))
57 vol0 46067 . . . . . 6 (vol‘∅) = 0
5857a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵𝐴) → (vol‘∅) = 0)
5956, 58eqtrd 2766 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵𝐴) → (vol‘(𝐴[,)𝐵)) = 0)
6044, 49, 59syl2anc 584 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = 0)
61 iffalse 4481 . . . 4 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
6261adantl 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
6360, 62eqtr4d 2769 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
6443, 63pm2.61dan 812 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  cun 3895  cin 3896  c0 4280  ifcif 4472  {csn 4573   class class class wbr 5089  dom cdm 5614  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006   + caddc 11009  *cxr 11145   < clt 11146  cle 11147  cmin 11344  (,)cioo 13245  [,)cico 13247  volcvol 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cmp 23302  df-ovol 25392  df-vol 25393
This theorem is referenced by:  sublevolico  46092  voliooico  46100  voliccico  46107  volicorecl  46654  hoiprodcl  46655  hoicvrrex  46664  volicon0  46683  hoiprodcl3  46688  volicore  46689  hoidmvcl  46690  hoidmvval0  46695  hoidmv1lelem2  46700  hoidmv1le  46702  hoidmvlelem2  46704  hoidmvlelem3  46705  hoidmvlelem4  46706  hspmbllem1  46734  volico2  46749  ovolval2lem  46751  vonioolem1  46788  vonioo  46790  vonicclem1  46791
  Copyright terms: Public domain W3C validator