Proof of Theorem volico
| Step | Hyp | Ref
| Expression |
| 1 | | rexr 11307 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
| 2 | 1 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈
ℝ*) |
| 3 | | rexr 11307 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
| 4 | 3 | 3ad2ant2 1135 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈
ℝ*) |
| 5 | | simp3 1139 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) |
| 6 | | snunioo1 45525 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
| 7 | 2, 4, 5, 6 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐴}) = (𝐴[,)𝐵)) |
| 8 | 7 | eqcomd 2743 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴[,)𝐵) = ((𝐴(,)𝐵) ∪ {𝐴})) |
| 9 | 8 | fveq2d 6910 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = (vol‘((𝐴(,)𝐵) ∪ {𝐴}))) |
| 10 | | ioombl 25600 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ∈ dom vol |
| 11 | 10 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴(,)𝐵) ∈ dom vol) |
| 12 | | snmbl 45978 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → {𝐴} ∈ dom
vol) |
| 13 | 12 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → {𝐴} ∈ dom vol) |
| 14 | | lbioo 13418 |
. . . . . . . 8
⊢ ¬
𝐴 ∈ (𝐴(,)𝐵) |
| 15 | | disjsn 4711 |
. . . . . . . 8
⊢ (((𝐴(,)𝐵) ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ (𝐴(,)𝐵)) |
| 16 | 14, 15 | mpbir 231 |
. . . . . . 7
⊢ ((𝐴(,)𝐵) ∩ {𝐴}) = ∅ |
| 17 | 16 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴(,)𝐵) ∩ {𝐴}) = ∅) |
| 18 | | ioovolcl 25605 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(vol‘(𝐴(,)𝐵)) ∈
ℝ) |
| 19 | 18 | 3adant3 1133 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,)𝐵)) ∈ ℝ) |
| 20 | | volsn 45982 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ →
(vol‘{𝐴}) =
0) |
| 21 | | 0red 11264 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → 0 ∈
ℝ) |
| 22 | 20, 21 | eqeltrd 2841 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ →
(vol‘{𝐴}) ∈
ℝ) |
| 23 | 22 | 3ad2ant1 1134 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘{𝐴}) ∈ ℝ) |
| 24 | | volun 25580 |
. . . . . 6
⊢ ((((𝐴(,)𝐵) ∈ dom vol ∧ {𝐴} ∈ dom vol ∧ ((𝐴(,)𝐵) ∩ {𝐴}) = ∅) ∧ ((vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ (vol‘{𝐴}) ∈ ℝ)) →
(vol‘((𝐴(,)𝐵) ∪ {𝐴})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴}))) |
| 25 | 11, 13, 17, 19, 23, 24 | syl32anc 1380 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘((𝐴(,)𝐵) ∪ {𝐴})) = ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴}))) |
| 26 | | simp1 1137 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
| 27 | | simp2 1138 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
| 28 | 26, 27, 5 | ltled 11409 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ≤ 𝐵) |
| 29 | | volioo 25604 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
| 30 | 26, 27, 28, 29 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
| 31 | 20 | 3ad2ant1 1134 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘{𝐴}) = 0) |
| 32 | 30, 31 | oveq12d 7449 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴})) = ((𝐵 − 𝐴) + 0)) |
| 33 | 27 | recnd 11289 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ) |
| 34 | | recn 11245 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
| 35 | 34 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ) |
| 36 | 33, 35 | subcld 11620 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) ∈ ℂ) |
| 37 | 36 | addridd 11461 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐵 − 𝐴) + 0) = (𝐵 − 𝐴)) |
| 38 | 32, 37 | eqtrd 2777 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((vol‘(𝐴(,)𝐵)) + (vol‘{𝐴})) = (𝐵 − 𝐴)) |
| 39 | 9, 25, 38 | 3eqtrd 2781 |
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = (𝐵 − 𝐴)) |
| 40 | 39 | 3expa 1119 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = (𝐵 − 𝐴)) |
| 41 | | iftrue 4531 |
. . . 4
⊢ (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
| 42 | 41 | adantl 481 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
| 43 | 40, 42 | eqtr4d 2780 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
| 44 | | simpl 482 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 < 𝐵) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 45 | | simpr 484 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 < 𝐵) → ¬ 𝐴 < 𝐵) |
| 46 | 44 | simprd 495 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
| 47 | 44 | simpld 494 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
| 48 | 46, 47 | lenltd 11407 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 < 𝐵) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
| 49 | 45, 48 | mpbird 257 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 < 𝐵) → 𝐵 ≤ 𝐴) |
| 50 | | simpr 484 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) |
| 51 | 1 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈
ℝ*) |
| 52 | 3 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈
ℝ*) |
| 53 | | ico0 13433 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
| 54 | 51, 52, 53 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
| 55 | 50, 54 | mpbird 257 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → (𝐴[,)𝐵) = ∅) |
| 56 | 55 | fveq2d 6910 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → (vol‘(𝐴[,)𝐵)) = (vol‘∅)) |
| 57 | | vol0 45974 |
. . . . . 6
⊢
(vol‘∅) = 0 |
| 58 | 57 | a1i 11 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → (vol‘∅) =
0) |
| 59 | 56, 58 | eqtrd 2777 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → (vol‘(𝐴[,)𝐵)) = 0) |
| 60 | 44, 49, 59 | syl2anc 584 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = 0) |
| 61 | | iffalse 4534 |
. . . 4
⊢ (¬
𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) |
| 62 | 61 | adantl 481 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) |
| 63 | 60, 62 | eqtr4d 2780 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ¬
𝐴 < 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
| 64 | 43, 63 | pm2.61dan 813 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
(vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |