Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem29 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39372. (Contributed by NM, 9-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) |
Ref | Expression |
---|---|
lcfrlem29 | ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem17.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | lcfrlem17.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | dvhlmod 38897 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
5 | lcfrlem24.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
6 | 5 | lmodring 19939 | . . 3 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
7 | 4, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) |
8 | 1, 2, 3 | dvhlvec 38896 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LVec) |
9 | 5 | lvecdrng 20174 | . . . 4 ⊢ (𝑈 ∈ LVec → 𝑆 ∈ DivRing) |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
11 | lcfrlem17.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
12 | lcfrlem17.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
13 | lcfrlem17.p | . . . . 5 ⊢ + = (+g‘𝑈) | |
14 | lcfrlem24.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
15 | lcfrlem24.r | . . . . 5 ⊢ 𝑅 = (Base‘𝑆) | |
16 | lcfrlem17.z | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
17 | eqid 2739 | . . . . 5 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
18 | lcfrlem24.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
19 | lcfrlem25.d | . . . . 5 ⊢ 𝐷 = (LDual‘𝑈) | |
20 | eqid 2739 | . . . . 5 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
21 | eqid 2739 | . . . . 5 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
22 | lcfrlem24.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
23 | lcfrlem17.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
24 | 1, 11, 2, 12, 13, 14, 5, 15, 16, 17, 18, 19, 20, 21, 22, 3, 23 | lcfrlem10 39339 | . . . 4 ⊢ (𝜑 → (𝐽‘𝑌) ∈ (LFnl‘𝑈)) |
25 | eqid 2739 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
26 | lcfrlem17.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
27 | lcfrlem17.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑈) | |
28 | lcfrlem17.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
29 | lcfrlem17.ne | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
30 | lcfrlem22.b | . . . . . . 7 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
31 | 1, 11, 2, 12, 13, 16, 27, 26, 3, 28, 23, 29, 30 | lcfrlem22 39351 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
32 | 25, 26, 4, 31 | lsatlssel 36784 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (LSubSp‘𝑈)) |
33 | lcfrlem24.ib | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
34 | 12, 25 | lssel 20006 | . . . . 5 ⊢ ((𝐵 ∈ (LSubSp‘𝑈) ∧ 𝐼 ∈ 𝐵) → 𝐼 ∈ 𝑉) |
35 | 32, 33, 34 | syl2anc 587 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
36 | 5, 15, 12, 17 | lflcl 36851 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ (𝐽‘𝑌) ∈ (LFnl‘𝑈) ∧ 𝐼 ∈ 𝑉) → ((𝐽‘𝑌)‘𝐼) ∈ 𝑅) |
37 | 4, 24, 35, 36 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ∈ 𝑅) |
38 | lcfrlem28.jn | . . 3 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
39 | lcfrlem24.q | . . . 4 ⊢ 𝑄 = (0g‘𝑆) | |
40 | lcfrlem29.i | . . . 4 ⊢ 𝐹 = (invr‘𝑆) | |
41 | 15, 39, 40 | drnginvrcl 19816 | . . 3 ⊢ ((𝑆 ∈ DivRing ∧ ((𝐽‘𝑌)‘𝐼) ∈ 𝑅 ∧ ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) → (𝐹‘((𝐽‘𝑌)‘𝐼)) ∈ 𝑅) |
42 | 10, 37, 38, 41 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹‘((𝐽‘𝑌)‘𝐼)) ∈ 𝑅) |
43 | 1, 11, 2, 12, 13, 14, 5, 15, 16, 17, 18, 19, 20, 21, 22, 3, 28 | lcfrlem10 39339 | . . 3 ⊢ (𝜑 → (𝐽‘𝑋) ∈ (LFnl‘𝑈)) |
44 | 5, 15, 12, 17 | lflcl 36851 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ (𝐽‘𝑋) ∈ (LFnl‘𝑈) ∧ 𝐼 ∈ 𝑉) → ((𝐽‘𝑋)‘𝐼) ∈ 𝑅) |
45 | 4, 43, 35, 44 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) ∈ 𝑅) |
46 | eqid 2739 | . . 3 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
47 | 15, 46 | ringcl 19611 | . 2 ⊢ ((𝑆 ∈ Ring ∧ (𝐹‘((𝐽‘𝑌)‘𝐼)) ∈ 𝑅 ∧ ((𝐽‘𝑋)‘𝐼) ∈ 𝑅) → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) ∈ 𝑅) |
48 | 7, 42, 45, 47 | syl3anc 1373 | 1 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 ∃wrex 3065 {crab 3068 ∖ cdif 3880 ∩ cin 3882 {csn 4557 {cpr 4559 ↦ cmpt 5151 ‘cfv 6400 ℩crio 7190 (class class class)co 7234 Basecbs 16792 +gcplusg 16834 .rcmulr 16835 Scalarcsca 16837 ·𝑠 cvsca 16838 0gc0g 16976 Ringcrg 19594 invrcinvr 19721 DivRingcdr 19799 LModclmod 19931 LSubSpclss 20000 LSpanclspn 20040 LVecclvec 20171 LSAtomsclsa 36761 LFnlclfn 36844 LKerclk 36872 LDualcld 36910 HLchlt 37137 LHypclh 37771 DVecHcdvh 38865 ocHcoch 39134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 ax-riotaBAD 36740 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-iin 4923 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-tpos 7991 df-undef 8038 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-map 8533 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-nn 11860 df-2 11922 df-3 11923 df-4 11924 df-5 11925 df-6 11926 df-n0 12120 df-z 12206 df-uz 12468 df-fz 13125 df-struct 16732 df-sets 16749 df-slot 16767 df-ndx 16777 df-base 16793 df-ress 16817 df-plusg 16847 df-mulr 16848 df-sca 16850 df-vsca 16851 df-0g 16978 df-mre 17121 df-mrc 17122 df-acs 17124 df-proset 17834 df-poset 17852 df-plt 17868 df-lub 17884 df-glb 17885 df-join 17886 df-meet 17887 df-p0 17963 df-p1 17964 df-lat 17970 df-clat 18037 df-mgm 18146 df-sgrp 18195 df-mnd 18206 df-submnd 18251 df-grp 18400 df-minusg 18401 df-sbg 18402 df-subg 18572 df-cntz 18743 df-oppg 18770 df-lsm 19057 df-cmn 19204 df-abl 19205 df-mgp 19537 df-ur 19549 df-ring 19596 df-oppr 19673 df-dvdsr 19691 df-unit 19692 df-invr 19722 df-dvr 19733 df-drng 19801 df-lmod 19933 df-lss 20001 df-lsp 20041 df-lvec 20172 df-lsatoms 36763 df-lshyp 36764 df-lcv 36806 df-lfl 36845 df-oposet 36963 df-ol 36965 df-oml 36966 df-covers 37053 df-ats 37054 df-atl 37085 df-cvlat 37109 df-hlat 37138 df-llines 37285 df-lplanes 37286 df-lvols 37287 df-lines 37288 df-psubsp 37290 df-pmap 37291 df-padd 37583 df-lhyp 37775 df-laut 37776 df-ldil 37891 df-ltrn 37892 df-trl 37946 df-tgrp 38530 df-tendo 38542 df-edring 38544 df-dveca 38790 df-disoa 38816 df-dvech 38866 df-dib 38926 df-dic 38960 df-dih 39016 df-doch 39135 df-djh 39182 |
This theorem is referenced by: lcfrlem30 39359 lcfrlem31 39360 lcfrlem37 39366 |
Copyright terms: Public domain | W3C validator |