| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem33 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41587. (Contributed by NM, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcfrlem17.p | ⊢ + = (+g‘𝑈) |
| lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
| lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
| lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
| lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
| lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
| lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
| lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
| lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
| lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) |
| lcfrlem30.m | ⊢ − = (-g‘𝐷) |
| lcfrlem30.c | ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
| lcfrlem33.xi | ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) = 𝑄) |
| Ref | Expression |
|---|---|
| lcfrlem33 | ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem30.c | . . 3 ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
| 2 | lcfrlem33.xi | . . . . . . . . 9 ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) = 𝑄) | |
| 3 | 2 | oveq2d 7447 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) = ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)𝑄)) |
| 4 | lcfrlem17.h | . . . . . . . . . . 11 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | lcfrlem17.u | . . . . . . . . . . 11 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | lcfrlem17.k | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | 4, 5, 6 | dvhlmod 41112 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 8 | lcfrlem24.s | . . . . . . . . . . 11 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 9 | 8 | lmodring 20866 | . . . . . . . . . 10 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
| 10 | 7, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 11 | 4, 5, 6 | dvhlvec 41111 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 12 | 8 | lvecdrng 21104 | . . . . . . . . . . 11 ⊢ (𝑈 ∈ LVec → 𝑆 ∈ DivRing) |
| 13 | 11, 12 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
| 14 | lcfrlem17.o | . . . . . . . . . . . 12 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 15 | lcfrlem17.v | . . . . . . . . . . . 12 ⊢ 𝑉 = (Base‘𝑈) | |
| 16 | lcfrlem17.p | . . . . . . . . . . . 12 ⊢ + = (+g‘𝑈) | |
| 17 | lcfrlem24.t | . . . . . . . . . . . 12 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 18 | lcfrlem24.r | . . . . . . . . . . . 12 ⊢ 𝑅 = (Base‘𝑆) | |
| 19 | lcfrlem17.z | . . . . . . . . . . . 12 ⊢ 0 = (0g‘𝑈) | |
| 20 | eqid 2737 | . . . . . . . . . . . 12 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
| 21 | lcfrlem24.l | . . . . . . . . . . . 12 ⊢ 𝐿 = (LKer‘𝑈) | |
| 22 | lcfrlem25.d | . . . . . . . . . . . 12 ⊢ 𝐷 = (LDual‘𝑈) | |
| 23 | eqid 2737 | . . . . . . . . . . . 12 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
| 24 | eqid 2737 | . . . . . . . . . . . 12 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 25 | lcfrlem24.j | . . . . . . . . . . . 12 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
| 26 | lcfrlem17.y | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 27 | 4, 14, 5, 15, 16, 17, 8, 18, 19, 20, 21, 22, 23, 24, 25, 6, 26 | lcfrlem10 41554 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐽‘𝑌) ∈ (LFnl‘𝑈)) |
| 28 | lcfrlem17.a | . . . . . . . . . . . . 13 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
| 29 | lcfrlem17.n | . . . . . . . . . . . . . 14 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 30 | lcfrlem17.x | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 31 | lcfrlem17.ne | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 32 | lcfrlem22.b | . . . . . . . . . . . . . 14 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
| 33 | 4, 14, 5, 15, 16, 19, 29, 28, 6, 30, 26, 31, 32 | lcfrlem22 41566 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| 34 | 15, 28, 7, 33 | lsatssv 38999 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 ⊆ 𝑉) |
| 35 | lcfrlem24.ib | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
| 36 | 34, 35 | sseldd 3984 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 37 | 8, 18, 15, 20 | lflcl 39065 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ (𝐽‘𝑌) ∈ (LFnl‘𝑈) ∧ 𝐼 ∈ 𝑉) → ((𝐽‘𝑌)‘𝐼) ∈ 𝑅) |
| 38 | 7, 27, 36, 37 | syl3anc 1373 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ∈ 𝑅) |
| 39 | lcfrlem28.jn | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
| 40 | lcfrlem24.q | . . . . . . . . . . 11 ⊢ 𝑄 = (0g‘𝑆) | |
| 41 | lcfrlem29.i | . . . . . . . . . . 11 ⊢ 𝐹 = (invr‘𝑆) | |
| 42 | 18, 40, 41 | drnginvrcl 20753 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ DivRing ∧ ((𝐽‘𝑌)‘𝐼) ∈ 𝑅 ∧ ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) → (𝐹‘((𝐽‘𝑌)‘𝐼)) ∈ 𝑅) |
| 43 | 13, 38, 39, 42 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘((𝐽‘𝑌)‘𝐼)) ∈ 𝑅) |
| 44 | eqid 2737 | . . . . . . . . . 10 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
| 45 | 18, 44, 40 | ringrz 20291 | . . . . . . . . 9 ⊢ ((𝑆 ∈ Ring ∧ (𝐹‘((𝐽‘𝑌)‘𝐼)) ∈ 𝑅) → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)𝑄) = 𝑄) |
| 46 | 10, 43, 45 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)𝑄) = 𝑄) |
| 47 | 3, 46 | eqtrd 2777 | . . . . . . 7 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) = 𝑄) |
| 48 | 47 | oveq1d 7446 | . . . . . 6 ⊢ (𝜑 → (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌)) = (𝑄( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
| 49 | eqid 2737 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
| 50 | 20, 8, 40, 22, 49, 23, 7, 27 | ldual0vs 39161 | . . . . . 6 ⊢ (𝜑 → (𝑄( ·𝑠 ‘𝐷)(𝐽‘𝑌)) = (0g‘𝐷)) |
| 51 | 48, 50 | eqtrd 2777 | . . . . 5 ⊢ (𝜑 → (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌)) = (0g‘𝐷)) |
| 52 | 51 | oveq2d 7447 | . . . 4 ⊢ (𝜑 → ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) = ((𝐽‘𝑋) − (0g‘𝐷))) |
| 53 | 22, 7 | ldualgrp 39147 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Grp) |
| 54 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 55 | 4, 14, 5, 15, 16, 17, 8, 18, 19, 20, 21, 22, 23, 24, 25, 6, 30 | lcfrlem10 41554 | . . . . . 6 ⊢ (𝜑 → (𝐽‘𝑋) ∈ (LFnl‘𝑈)) |
| 56 | 20, 22, 54, 7, 55 | ldualelvbase 39128 | . . . . 5 ⊢ (𝜑 → (𝐽‘𝑋) ∈ (Base‘𝐷)) |
| 57 | lcfrlem30.m | . . . . . 6 ⊢ − = (-g‘𝐷) | |
| 58 | 54, 23, 57 | grpsubid1 19043 | . . . . 5 ⊢ ((𝐷 ∈ Grp ∧ (𝐽‘𝑋) ∈ (Base‘𝐷)) → ((𝐽‘𝑋) − (0g‘𝐷)) = (𝐽‘𝑋)) |
| 59 | 53, 56, 58 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((𝐽‘𝑋) − (0g‘𝐷)) = (𝐽‘𝑋)) |
| 60 | 52, 59 | eqtrd 2777 | . . 3 ⊢ (𝜑 → ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) = (𝐽‘𝑋)) |
| 61 | 1, 60 | eqtrid 2789 | . 2 ⊢ (𝜑 → 𝐶 = (𝐽‘𝑋)) |
| 62 | 4, 14, 5, 15, 16, 17, 8, 18, 19, 20, 21, 22, 23, 24, 25, 6, 30 | lcfrlem13 41557 | . . 3 ⊢ (𝜑 → (𝐽‘𝑋) ∈ ({𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ∖ {(0g‘𝐷)})) |
| 63 | eldifsni 4790 | . . 3 ⊢ ((𝐽‘𝑋) ∈ ({𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ∖ {(0g‘𝐷)}) → (𝐽‘𝑋) ≠ (0g‘𝐷)) | |
| 64 | 62, 63 | syl 17 | . 2 ⊢ (𝜑 → (𝐽‘𝑋) ≠ (0g‘𝐷)) |
| 65 | 61, 64 | eqnetrd 3008 | 1 ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 {crab 3436 ∖ cdif 3948 ∩ cin 3950 {csn 4626 {cpr 4628 ↦ cmpt 5225 ‘cfv 6561 ℩crio 7387 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 Scalarcsca 17300 ·𝑠 cvsca 17301 0gc0g 17484 Grpcgrp 18951 -gcsg 18953 Ringcrg 20230 invrcinvr 20387 DivRingcdr 20729 LModclmod 20858 LSpanclspn 20969 LVecclvec 21101 LSAtomsclsa 38975 LFnlclfn 39058 LKerclk 39086 LDualcld 39124 HLchlt 39351 LHypclh 39986 DVecHcdvh 41080 ocHcoch 41349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-riotaBAD 38954 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-undef 8298 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-0g 17486 df-mre 17629 df-mrc 17630 df-acs 17632 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-subg 19141 df-cntz 19335 df-oppg 19364 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-drng 20731 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lvec 21102 df-lsatoms 38977 df-lshyp 38978 df-lcv 39020 df-lfl 39059 df-lkr 39087 df-ldual 39125 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-llines 39500 df-lplanes 39501 df-lvols 39502 df-lines 39503 df-psubsp 39505 df-pmap 39506 df-padd 39798 df-lhyp 39990 df-laut 39991 df-ldil 40106 df-ltrn 40107 df-trl 40161 df-tgrp 40745 df-tendo 40757 df-edring 40759 df-dveca 41005 df-disoa 41031 df-dvech 41081 df-dib 41141 df-dic 41175 df-dih 41231 df-doch 41350 df-djh 41397 |
| This theorem is referenced by: lcfrlem34 41578 |
| Copyright terms: Public domain | W3C validator |