Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem33 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39373. (Contributed by NM, 10-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) |
lcfrlem30.m | ⊢ − = (-g‘𝐷) |
lcfrlem30.c | ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
lcfrlem33.xi | ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) = 𝑄) |
Ref | Expression |
---|---|
lcfrlem33 | ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem30.c | . . 3 ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
2 | lcfrlem33.xi | . . . . . . . . 9 ⊢ (𝜑 → ((𝐽‘𝑋)‘𝐼) = 𝑄) | |
3 | 2 | oveq2d 7251 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) = ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)𝑄)) |
4 | lcfrlem17.h | . . . . . . . . . . 11 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | lcfrlem17.u | . . . . . . . . . . 11 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | lcfrlem17.k | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | 4, 5, 6 | dvhlmod 38898 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑈 ∈ LMod) |
8 | lcfrlem24.s | . . . . . . . . . . 11 ⊢ 𝑆 = (Scalar‘𝑈) | |
9 | 8 | lmodring 19940 | . . . . . . . . . 10 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
10 | 7, 9 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ∈ Ring) |
11 | 4, 5, 6 | dvhlvec 38897 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LVec) |
12 | 8 | lvecdrng 20175 | . . . . . . . . . . 11 ⊢ (𝑈 ∈ LVec → 𝑆 ∈ DivRing) |
13 | 11, 12 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
14 | lcfrlem17.o | . . . . . . . . . . . 12 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
15 | lcfrlem17.v | . . . . . . . . . . . 12 ⊢ 𝑉 = (Base‘𝑈) | |
16 | lcfrlem17.p | . . . . . . . . . . . 12 ⊢ + = (+g‘𝑈) | |
17 | lcfrlem24.t | . . . . . . . . . . . 12 ⊢ · = ( ·𝑠 ‘𝑈) | |
18 | lcfrlem24.r | . . . . . . . . . . . 12 ⊢ 𝑅 = (Base‘𝑆) | |
19 | lcfrlem17.z | . . . . . . . . . . . 12 ⊢ 0 = (0g‘𝑈) | |
20 | eqid 2739 | . . . . . . . . . . . 12 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
21 | lcfrlem24.l | . . . . . . . . . . . 12 ⊢ 𝐿 = (LKer‘𝑈) | |
22 | lcfrlem25.d | . . . . . . . . . . . 12 ⊢ 𝐷 = (LDual‘𝑈) | |
23 | eqid 2739 | . . . . . . . . . . . 12 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
24 | eqid 2739 | . . . . . . . . . . . 12 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
25 | lcfrlem24.j | . . . . . . . . . . . 12 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
26 | lcfrlem17.y | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
27 | 4, 14, 5, 15, 16, 17, 8, 18, 19, 20, 21, 22, 23, 24, 25, 6, 26 | lcfrlem10 39340 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐽‘𝑌) ∈ (LFnl‘𝑈)) |
28 | lcfrlem17.a | . . . . . . . . . . . . 13 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
29 | lcfrlem17.n | . . . . . . . . . . . . . 14 ⊢ 𝑁 = (LSpan‘𝑈) | |
30 | lcfrlem17.x | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
31 | lcfrlem17.ne | . . . . . . . . . . . . . 14 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
32 | lcfrlem22.b | . . . . . . . . . . . . . 14 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
33 | 4, 14, 5, 15, 16, 19, 29, 28, 6, 30, 26, 31, 32 | lcfrlem22 39352 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
34 | 15, 28, 7, 33 | lsatssv 36786 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐵 ⊆ 𝑉) |
35 | lcfrlem24.ib | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
36 | 34, 35 | sseldd 3919 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
37 | 8, 18, 15, 20 | lflcl 36852 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ (𝐽‘𝑌) ∈ (LFnl‘𝑈) ∧ 𝐼 ∈ 𝑉) → ((𝐽‘𝑌)‘𝐼) ∈ 𝑅) |
38 | 7, 27, 36, 37 | syl3anc 1373 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ∈ 𝑅) |
39 | lcfrlem28.jn | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
40 | lcfrlem24.q | . . . . . . . . . . 11 ⊢ 𝑄 = (0g‘𝑆) | |
41 | lcfrlem29.i | . . . . . . . . . . 11 ⊢ 𝐹 = (invr‘𝑆) | |
42 | 18, 40, 41 | drnginvrcl 19817 | . . . . . . . . . 10 ⊢ ((𝑆 ∈ DivRing ∧ ((𝐽‘𝑌)‘𝐼) ∈ 𝑅 ∧ ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) → (𝐹‘((𝐽‘𝑌)‘𝐼)) ∈ 𝑅) |
43 | 13, 38, 39, 42 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘((𝐽‘𝑌)‘𝐼)) ∈ 𝑅) |
44 | eqid 2739 | . . . . . . . . . 10 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
45 | 18, 44, 40 | ringrz 19639 | . . . . . . . . 9 ⊢ ((𝑆 ∈ Ring ∧ (𝐹‘((𝐽‘𝑌)‘𝐼)) ∈ 𝑅) → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)𝑄) = 𝑄) |
46 | 10, 43, 45 | syl2anc 587 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)𝑄) = 𝑄) |
47 | 3, 46 | eqtrd 2779 | . . . . . . 7 ⊢ (𝜑 → ((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼)) = 𝑄) |
48 | 47 | oveq1d 7250 | . . . . . 6 ⊢ (𝜑 → (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌)) = (𝑄( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
49 | eqid 2739 | . . . . . . 7 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
50 | 20, 8, 40, 22, 49, 23, 7, 27 | ldual0vs 36948 | . . . . . 6 ⊢ (𝜑 → (𝑄( ·𝑠 ‘𝐷)(𝐽‘𝑌)) = (0g‘𝐷)) |
51 | 48, 50 | eqtrd 2779 | . . . . 5 ⊢ (𝜑 → (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌)) = (0g‘𝐷)) |
52 | 51 | oveq2d 7251 | . . . 4 ⊢ (𝜑 → ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) = ((𝐽‘𝑋) − (0g‘𝐷))) |
53 | 22, 7 | ldualgrp 36934 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Grp) |
54 | eqid 2739 | . . . . . 6 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
55 | 4, 14, 5, 15, 16, 17, 8, 18, 19, 20, 21, 22, 23, 24, 25, 6, 30 | lcfrlem10 39340 | . . . . . 6 ⊢ (𝜑 → (𝐽‘𝑋) ∈ (LFnl‘𝑈)) |
56 | 20, 22, 54, 7, 55 | ldualelvbase 36915 | . . . . 5 ⊢ (𝜑 → (𝐽‘𝑋) ∈ (Base‘𝐷)) |
57 | lcfrlem30.m | . . . . . 6 ⊢ − = (-g‘𝐷) | |
58 | 54, 23, 57 | grpsubid1 18481 | . . . . 5 ⊢ ((𝐷 ∈ Grp ∧ (𝐽‘𝑋) ∈ (Base‘𝐷)) → ((𝐽‘𝑋) − (0g‘𝐷)) = (𝐽‘𝑋)) |
59 | 53, 56, 58 | syl2anc 587 | . . . 4 ⊢ (𝜑 → ((𝐽‘𝑋) − (0g‘𝐷)) = (𝐽‘𝑋)) |
60 | 52, 59 | eqtrd 2779 | . . 3 ⊢ (𝜑 → ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) = (𝐽‘𝑋)) |
61 | 1, 60 | syl5eq 2792 | . 2 ⊢ (𝜑 → 𝐶 = (𝐽‘𝑋)) |
62 | 4, 14, 5, 15, 16, 17, 8, 18, 19, 20, 21, 22, 23, 24, 25, 6, 30 | lcfrlem13 39343 | . . 3 ⊢ (𝜑 → (𝐽‘𝑋) ∈ ({𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ∖ {(0g‘𝐷)})) |
63 | eldifsni 4720 | . . 3 ⊢ ((𝐽‘𝑋) ∈ ({𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ∖ {(0g‘𝐷)}) → (𝐽‘𝑋) ≠ (0g‘𝐷)) | |
64 | 62, 63 | syl 17 | . 2 ⊢ (𝜑 → (𝐽‘𝑋) ≠ (0g‘𝐷)) |
65 | 61, 64 | eqnetrd 3011 | 1 ⊢ (𝜑 → 𝐶 ≠ (0g‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 ∃wrex 3065 {crab 3068 ∖ cdif 3880 ∩ cin 3882 {csn 4558 {cpr 4560 ↦ cmpt 5152 ‘cfv 6401 ℩crio 7191 (class class class)co 7235 Basecbs 16793 +gcplusg 16835 .rcmulr 16836 Scalarcsca 16838 ·𝑠 cvsca 16839 0gc0g 16977 Grpcgrp 18398 -gcsg 18400 Ringcrg 19595 invrcinvr 19722 DivRingcdr 19800 LModclmod 19932 LSpanclspn 20041 LVecclvec 20172 LSAtomsclsa 36762 LFnlclfn 36845 LKerclk 36873 LDualcld 36911 HLchlt 37138 LHypclh 37772 DVecHcdvh 38866 ocHcoch 39135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 ax-riotaBAD 36741 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-of 7491 df-om 7667 df-1st 7783 df-2nd 7784 df-tpos 7992 df-undef 8039 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-1o 8226 df-er 8415 df-map 8534 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-nn 11861 df-2 11923 df-3 11924 df-4 11925 df-5 11926 df-6 11927 df-n0 12121 df-z 12207 df-uz 12469 df-fz 13126 df-struct 16733 df-sets 16750 df-slot 16768 df-ndx 16778 df-base 16794 df-ress 16818 df-plusg 16848 df-mulr 16849 df-sca 16851 df-vsca 16852 df-0g 16979 df-mre 17122 df-mrc 17123 df-acs 17125 df-proset 17835 df-poset 17853 df-plt 17869 df-lub 17885 df-glb 17886 df-join 17887 df-meet 17888 df-p0 17964 df-p1 17965 df-lat 17971 df-clat 18038 df-mgm 18147 df-sgrp 18196 df-mnd 18207 df-submnd 18252 df-grp 18401 df-minusg 18402 df-sbg 18403 df-subg 18573 df-cntz 18744 df-oppg 18771 df-lsm 19058 df-cmn 19205 df-abl 19206 df-mgp 19538 df-ur 19550 df-ring 19597 df-oppr 19674 df-dvdsr 19692 df-unit 19693 df-invr 19723 df-dvr 19734 df-drng 19802 df-lmod 19934 df-lss 20002 df-lsp 20042 df-lvec 20173 df-lsatoms 36764 df-lshyp 36765 df-lcv 36807 df-lfl 36846 df-lkr 36874 df-ldual 36912 df-oposet 36964 df-ol 36966 df-oml 36967 df-covers 37054 df-ats 37055 df-atl 37086 df-cvlat 37110 df-hlat 37139 df-llines 37286 df-lplanes 37287 df-lvols 37288 df-lines 37289 df-psubsp 37291 df-pmap 37292 df-padd 37584 df-lhyp 37776 df-laut 37777 df-ldil 37892 df-ltrn 37893 df-trl 37947 df-tgrp 38531 df-tendo 38543 df-edring 38545 df-dveca 38791 df-disoa 38817 df-dvech 38867 df-dib 38927 df-dic 38961 df-dih 39017 df-doch 39136 df-djh 39183 |
This theorem is referenced by: lcfrlem34 39364 |
Copyright terms: Public domain | W3C validator |