Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2m Structured version   Visualization version   GIF version

Theorem lclkrlem2m 38642
 Description: Lemma for lclkr 38656. Construct a vector 𝐵 that makes the sum of functionals zero. Combine with 𝐵 ∈ 𝑉 to shorten overall proof. (Contributed by NM, 17-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2m.w (𝜑𝑈 ∈ LVec)
lclkrlem2m.b 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
lclkrlem2m.n (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
Assertion
Ref Expression
lclkrlem2m (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))

Proof of Theorem lclkrlem2m
StepHypRef Expression
1 lclkrlem2m.b . . 3 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
2 lclkrlem2m.w . . . . . 6 (𝜑𝑈 ∈ LVec)
3 lveclmod 19870 . . . . . 6 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
42, 3syl 17 . . . . 5 (𝜑𝑈 ∈ LMod)
5 lmodgrp 19633 . . . . 5 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
64, 5syl 17 . . . 4 (𝜑𝑈 ∈ Grp)
7 lclkrlem2m.x . . . 4 (𝜑𝑋𝑉)
8 lclkrlem2m.s . . . . . . . 8 𝑆 = (Scalar‘𝑈)
98lmodring 19634 . . . . . . 7 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
104, 9syl 17 . . . . . 6 (𝜑𝑆 ∈ Ring)
11 lclkrlem2m.f . . . . . . . 8 𝐹 = (LFnl‘𝑈)
12 lclkrlem2m.d . . . . . . . 8 𝐷 = (LDual‘𝑈)
13 lclkrlem2m.p . . . . . . . 8 + = (+g𝐷)
14 lclkrlem2m.e . . . . . . . 8 (𝜑𝐸𝐹)
15 lclkrlem2m.g . . . . . . . 8 (𝜑𝐺𝐹)
1611, 12, 13, 4, 14, 15ldualvaddcl 36253 . . . . . . 7 (𝜑 → (𝐸 + 𝐺) ∈ 𝐹)
17 eqid 2819 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
18 lclkrlem2m.v . . . . . . . 8 𝑉 = (Base‘𝑈)
198, 17, 18, 11lflcl 36187 . . . . . . 7 ((𝑈 ∈ LVec ∧ (𝐸 + 𝐺) ∈ 𝐹𝑋𝑉) → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆))
202, 16, 7, 19syl3anc 1365 . . . . . 6 (𝜑 → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆))
218lvecdrng 19869 . . . . . . . 8 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
222, 21syl 17 . . . . . . 7 (𝜑𝑆 ∈ DivRing)
23 lclkrlem2m.y . . . . . . . 8 (𝜑𝑌𝑉)
248, 17, 18, 11lflcl 36187 . . . . . . . 8 ((𝑈 ∈ LVec ∧ (𝐸 + 𝐺) ∈ 𝐹𝑌𝑉) → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))
252, 16, 23, 24syl3anc 1365 . . . . . . 7 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))
26 lclkrlem2m.n . . . . . . 7 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
27 lclkrlem2m.z . . . . . . . 8 0 = (0g𝑆)
28 lclkrlem2m.i . . . . . . . 8 𝐼 = (invr𝑆)
2917, 27, 28drnginvrcl 19511 . . . . . . 7 ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆))
3022, 25, 26, 29syl3anc 1365 . . . . . 6 (𝜑 → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆))
31 lclkrlem2m.q . . . . . . 7 × = (.r𝑆)
3217, 31ringcl 19303 . . . . . 6 ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
3310, 20, 30, 32syl3anc 1365 . . . . 5 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
34 lclkrlem2m.t . . . . . 6 · = ( ·𝑠𝑈)
3518, 8, 34, 17lmodvscl 19643 . . . . 5 ((𝑈 ∈ LMod ∧ (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌𝑉) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)
364, 33, 23, 35syl3anc 1365 . . . 4 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)
37 lclkrlem2m.m . . . . 5 = (-g𝑈)
3818, 37grpsubcl 18171 . . . 4 ((𝑈 ∈ Grp ∧ 𝑋𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉) → (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ 𝑉)
396, 7, 36, 38syl3anc 1365 . . 3 (𝜑 → (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ 𝑉)
401, 39eqeltrid 2915 . 2 (𝜑𝐵𝑉)
411fveq2i 6666 . . 3 ((𝐸 + 𝐺)‘𝐵) = ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)))
42 eqid 2819 . . . . . 6 (-g𝑆) = (-g𝑆)
438, 42, 18, 37, 11lflsub 36190 . . . . 5 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ (𝑋𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)) → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))))
444, 16, 7, 36, 43syl112anc 1368 . . . 4 (𝜑 → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))))
458, 17, 31, 18, 34, 11lflmul 36191 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌𝑉)) → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)))
464, 16, 33, 23, 45syl112anc 1368 . . . . . 6 (𝜑 → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)))
4717, 31ringass 19306 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))))
4810, 20, 30, 25, 47syl13anc 1366 . . . . . . 7 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))))
49 eqid 2819 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
5017, 27, 31, 49, 28drnginvrl 19513 . . . . . . . . 9 ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)) = (1r𝑆))
5122, 25, 26, 50syl3anc 1365 . . . . . . . 8 (𝜑 → ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)) = (1r𝑆))
5251oveq2d 7164 . . . . . . 7 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))) = (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)))
5348, 52eqtrd 2854 . . . . . 6 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)))
5417, 31, 49ringridm 19314 . . . . . . 7 ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)) = ((𝐸 + 𝐺)‘𝑋))
5510, 20, 54syl2anc 586 . . . . . 6 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)) = ((𝐸 + 𝐺)‘𝑋))
5646, 53, 553eqtrd 2858 . . . . 5 (𝜑 → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((𝐸 + 𝐺)‘𝑋))
5756oveq2d 7164 . . . 4 (𝜑 → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)))
58 ringgrp 19294 . . . . . 6 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
5910, 58syl 17 . . . . 5 (𝜑𝑆 ∈ Grp)
6017, 27, 42grpsubid 18175 . . . . 5 ((𝑆 ∈ Grp ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)) = 0 )
6159, 20, 60syl2anc 586 . . . 4 (𝜑 → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)) = 0 )
6244, 57, 613eqtrd 2858 . . 3 (𝜑 → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = 0 )
6341, 62syl5eq 2866 . 2 (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 0 )
6440, 63jca 514 1 (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1530   ∈ wcel 2107   ≠ wne 3014  ‘cfv 6348  (class class class)co 7148  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  Grpcgrp 18095  -gcsg 18097  1rcur 19243  Ringcrg 19289  invrcinvr 19413  DivRingcdr 19494  LModclmod 19626  LVecclvec 19866  LFnlclfn 36180  LDualcld 36246 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-drng 19496  df-lmod 19628  df-lvec 19867  df-lfl 36181  df-ldual 36247 This theorem is referenced by:  lclkrlem2o  38644  lclkrlem2q  38646
 Copyright terms: Public domain W3C validator