Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2m Structured version   Visualization version   GIF version

Theorem lclkrlem2m 39460
Description: Lemma for lclkr 39474. Construct a vector 𝐵 that makes the sum of functionals zero. Combine with 𝐵𝑉 to shorten overall proof. (Contributed by NM, 17-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2m.w (𝜑𝑈 ∈ LVec)
lclkrlem2m.b 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
lclkrlem2m.n (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
Assertion
Ref Expression
lclkrlem2m (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))

Proof of Theorem lclkrlem2m
StepHypRef Expression
1 lclkrlem2m.b . . 3 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
2 lclkrlem2m.w . . . . . 6 (𝜑𝑈 ∈ LVec)
3 lveclmod 20283 . . . . . 6 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
42, 3syl 17 . . . . 5 (𝜑𝑈 ∈ LMod)
5 lmodgrp 20045 . . . . 5 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
64, 5syl 17 . . . 4 (𝜑𝑈 ∈ Grp)
7 lclkrlem2m.x . . . 4 (𝜑𝑋𝑉)
8 lclkrlem2m.s . . . . . . . 8 𝑆 = (Scalar‘𝑈)
98lmodring 20046 . . . . . . 7 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
104, 9syl 17 . . . . . 6 (𝜑𝑆 ∈ Ring)
11 lclkrlem2m.f . . . . . . . 8 𝐹 = (LFnl‘𝑈)
12 lclkrlem2m.d . . . . . . . 8 𝐷 = (LDual‘𝑈)
13 lclkrlem2m.p . . . . . . . 8 + = (+g𝐷)
14 lclkrlem2m.e . . . . . . . 8 (𝜑𝐸𝐹)
15 lclkrlem2m.g . . . . . . . 8 (𝜑𝐺𝐹)
1611, 12, 13, 4, 14, 15ldualvaddcl 37071 . . . . . . 7 (𝜑 → (𝐸 + 𝐺) ∈ 𝐹)
17 eqid 2738 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
18 lclkrlem2m.v . . . . . . . 8 𝑉 = (Base‘𝑈)
198, 17, 18, 11lflcl 37005 . . . . . . 7 ((𝑈 ∈ LVec ∧ (𝐸 + 𝐺) ∈ 𝐹𝑋𝑉) → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆))
202, 16, 7, 19syl3anc 1369 . . . . . 6 (𝜑 → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆))
218lvecdrng 20282 . . . . . . . 8 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
222, 21syl 17 . . . . . . 7 (𝜑𝑆 ∈ DivRing)
23 lclkrlem2m.y . . . . . . . 8 (𝜑𝑌𝑉)
248, 17, 18, 11lflcl 37005 . . . . . . . 8 ((𝑈 ∈ LVec ∧ (𝐸 + 𝐺) ∈ 𝐹𝑌𝑉) → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))
252, 16, 23, 24syl3anc 1369 . . . . . . 7 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))
26 lclkrlem2m.n . . . . . . 7 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
27 lclkrlem2m.z . . . . . . . 8 0 = (0g𝑆)
28 lclkrlem2m.i . . . . . . . 8 𝐼 = (invr𝑆)
2917, 27, 28drnginvrcl 19923 . . . . . . 7 ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆))
3022, 25, 26, 29syl3anc 1369 . . . . . 6 (𝜑 → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆))
31 lclkrlem2m.q . . . . . . 7 × = (.r𝑆)
3217, 31ringcl 19715 . . . . . 6 ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
3310, 20, 30, 32syl3anc 1369 . . . . 5 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
34 lclkrlem2m.t . . . . . 6 · = ( ·𝑠𝑈)
3518, 8, 34, 17lmodvscl 20055 . . . . 5 ((𝑈 ∈ LMod ∧ (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌𝑉) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)
364, 33, 23, 35syl3anc 1369 . . . 4 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)
37 lclkrlem2m.m . . . . 5 = (-g𝑈)
3818, 37grpsubcl 18570 . . . 4 ((𝑈 ∈ Grp ∧ 𝑋𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉) → (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ 𝑉)
396, 7, 36, 38syl3anc 1369 . . 3 (𝜑 → (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ 𝑉)
401, 39eqeltrid 2843 . 2 (𝜑𝐵𝑉)
411fveq2i 6759 . . 3 ((𝐸 + 𝐺)‘𝐵) = ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)))
42 eqid 2738 . . . . . 6 (-g𝑆) = (-g𝑆)
438, 42, 18, 37, 11lflsub 37008 . . . . 5 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ (𝑋𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)) → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))))
444, 16, 7, 36, 43syl112anc 1372 . . . 4 (𝜑 → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))))
458, 17, 31, 18, 34, 11lflmul 37009 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌𝑉)) → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)))
464, 16, 33, 23, 45syl112anc 1372 . . . . . 6 (𝜑 → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)))
4717, 31ringass 19718 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))))
4810, 20, 30, 25, 47syl13anc 1370 . . . . . . 7 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))))
49 eqid 2738 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
5017, 27, 31, 49, 28drnginvrl 19925 . . . . . . . . 9 ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)) = (1r𝑆))
5122, 25, 26, 50syl3anc 1369 . . . . . . . 8 (𝜑 → ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)) = (1r𝑆))
5251oveq2d 7271 . . . . . . 7 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))) = (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)))
5348, 52eqtrd 2778 . . . . . 6 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)))
5417, 31, 49ringridm 19726 . . . . . . 7 ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)) = ((𝐸 + 𝐺)‘𝑋))
5510, 20, 54syl2anc 583 . . . . . 6 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)) = ((𝐸 + 𝐺)‘𝑋))
5646, 53, 553eqtrd 2782 . . . . 5 (𝜑 → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((𝐸 + 𝐺)‘𝑋))
5756oveq2d 7271 . . . 4 (𝜑 → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)))
58 ringgrp 19703 . . . . . 6 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
5910, 58syl 17 . . . . 5 (𝜑𝑆 ∈ Grp)
6017, 27, 42grpsubid 18574 . . . . 5 ((𝑆 ∈ Grp ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)) = 0 )
6159, 20, 60syl2anc 583 . . . 4 (𝜑 → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)) = 0 )
6244, 57, 613eqtrd 2782 . . 3 (𝜑 → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = 0 )
6341, 62syl5eq 2791 . 2 (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 0 )
6440, 63jca 511 1 (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  1rcur 19652  Ringcrg 19698  invrcinvr 19828  DivRingcdr 19906  LModclmod 20038  LVecclvec 20279  LFnlclfn 36998  LDualcld 37064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lvec 20280  df-lfl 36999  df-ldual 37065
This theorem is referenced by:  lclkrlem2o  39462  lclkrlem2q  39464
  Copyright terms: Public domain W3C validator