Proof of Theorem lclkrlem2m
Step | Hyp | Ref
| Expression |
1 | | lclkrlem2m.b |
. . 3
⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) |
2 | | lclkrlem2m.w |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ LVec) |
3 | | lveclmod 20283 |
. . . . . 6
⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) |
4 | 2, 3 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ LMod) |
5 | | lmodgrp 20045 |
. . . . 5
⊢ (𝑈 ∈ LMod → 𝑈 ∈ Grp) |
6 | 4, 5 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ Grp) |
7 | | lclkrlem2m.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
8 | | lclkrlem2m.s |
. . . . . . . 8
⊢ 𝑆 = (Scalar‘𝑈) |
9 | 8 | lmodring 20046 |
. . . . . . 7
⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
10 | 4, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Ring) |
11 | | lclkrlem2m.f |
. . . . . . . 8
⊢ 𝐹 = (LFnl‘𝑈) |
12 | | lclkrlem2m.d |
. . . . . . . 8
⊢ 𝐷 = (LDual‘𝑈) |
13 | | lclkrlem2m.p |
. . . . . . . 8
⊢ + =
(+g‘𝐷) |
14 | | lclkrlem2m.e |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ 𝐹) |
15 | | lclkrlem2m.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
16 | 11, 12, 13, 4, 14, 15 | ldualvaddcl 37071 |
. . . . . . 7
⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐹) |
17 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑆) =
(Base‘𝑆) |
18 | | lclkrlem2m.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑈) |
19 | 8, 17, 18, 11 | lflcl 37005 |
. . . . . . 7
⊢ ((𝑈 ∈ LVec ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) |
20 | 2, 16, 7, 19 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) |
21 | 8 | lvecdrng 20282 |
. . . . . . . 8
⊢ (𝑈 ∈ LVec → 𝑆 ∈
DivRing) |
22 | 2, 21 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ DivRing) |
23 | | lclkrlem2m.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
24 | 8, 17, 18, 11 | lflcl 37005 |
. . . . . . . 8
⊢ ((𝑈 ∈ LVec ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ 𝑌 ∈ 𝑉) → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆)) |
25 | 2, 16, 23, 24 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆)) |
26 | | lclkrlem2m.n |
. . . . . . 7
⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) |
27 | | lclkrlem2m.z |
. . . . . . . 8
⊢ 0 =
(0g‘𝑆) |
28 | | lclkrlem2m.i |
. . . . . . . 8
⊢ 𝐼 = (invr‘𝑆) |
29 | 17, 27, 28 | drnginvrcl 19923 |
. . . . . . 7
⊢ ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆)) |
30 | 22, 25, 26, 29 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆)) |
31 | | lclkrlem2m.q |
. . . . . . 7
⊢ × =
(.r‘𝑆) |
32 | 17, 31 | ringcl 19715 |
. . . . . 6
⊢ ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆)) |
33 | 10, 20, 30, 32 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆)) |
34 | | lclkrlem2m.t |
. . . . . 6
⊢ · = (
·𝑠 ‘𝑈) |
35 | 18, 8, 34, 17 | lmodvscl 20055 |
. . . . 5
⊢ ((𝑈 ∈ LMod ∧ (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌 ∈ 𝑉) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉) |
36 | 4, 33, 23, 35 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉) |
37 | | lclkrlem2m.m |
. . . . 5
⊢ − =
(-g‘𝑈) |
38 | 18, 37 | grpsubcl 18570 |
. . . 4
⊢ ((𝑈 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉) → (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ 𝑉) |
39 | 6, 7, 36, 38 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ 𝑉) |
40 | 1, 39 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
41 | 1 | fveq2i 6759 |
. . 3
⊢ ((𝐸 + 𝐺)‘𝐵) = ((𝐸 + 𝐺)‘(𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) |
42 | | eqid 2738 |
. . . . . 6
⊢
(-g‘𝑆) = (-g‘𝑆) |
43 | 8, 42, 18, 37, 11 | lflsub 37008 |
. . . . 5
⊢ ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ (𝑋 ∈ 𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)) → ((𝐸 + 𝐺)‘(𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g‘𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)))) |
44 | 4, 16, 7, 36, 43 | syl112anc 1372 |
. . . 4
⊢ (𝜑 → ((𝐸 + 𝐺)‘(𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g‘𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)))) |
45 | 8, 17, 31, 18, 34, 11 | lflmul 37009 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌 ∈ 𝑉)) → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌))) |
46 | 4, 16, 33, 23, 45 | syl112anc 1372 |
. . . . . 6
⊢ (𝜑 → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌))) |
47 | 17, 31 | ringass 19718 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ (((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)))) |
48 | 10, 20, 30, 25, 47 | syl13anc 1370 |
. . . . . . 7
⊢ (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)))) |
49 | | eqid 2738 |
. . . . . . . . . 10
⊢
(1r‘𝑆) = (1r‘𝑆) |
50 | 17, 27, 31, 49, 28 | drnginvrl 19925 |
. . . . . . . . 9
⊢ ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)) = (1r‘𝑆)) |
51 | 22, 25, 26, 50 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)) = (1r‘𝑆)) |
52 | 51 | oveq2d 7271 |
. . . . . . 7
⊢ (𝜑 → (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))) = (((𝐸 + 𝐺)‘𝑋) ×
(1r‘𝑆))) |
53 | 48, 52 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) ×
(1r‘𝑆))) |
54 | 17, 31, 49 | ringridm 19726 |
. . . . . . 7
⊢ ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) ×
(1r‘𝑆)) =
((𝐸 + 𝐺)‘𝑋)) |
55 | 10, 20, 54 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (((𝐸 + 𝐺)‘𝑋) ×
(1r‘𝑆)) =
((𝐸 + 𝐺)‘𝑋)) |
56 | 46, 53, 55 | 3eqtrd 2782 |
. . . . 5
⊢ (𝜑 → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((𝐸 + 𝐺)‘𝑋)) |
57 | 56 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → (((𝐸 + 𝐺)‘𝑋)(-g‘𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g‘𝑆)((𝐸 + 𝐺)‘𝑋))) |
58 | | ringgrp 19703 |
. . . . . 6
⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) |
59 | 10, 58 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ Grp) |
60 | 17, 27, 42 | grpsubid 18574 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋)(-g‘𝑆)((𝐸 + 𝐺)‘𝑋)) = 0 ) |
61 | 59, 20, 60 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (((𝐸 + 𝐺)‘𝑋)(-g‘𝑆)((𝐸 + 𝐺)‘𝑋)) = 0 ) |
62 | 44, 57, 61 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 → ((𝐸 + 𝐺)‘(𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = 0 ) |
63 | 41, 62 | syl5eq 2791 |
. 2
⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 0 ) |
64 | 40, 63 | jca 511 |
1
⊢ (𝜑 → (𝐵 ∈ 𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 )) |