Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2m Structured version   Visualization version   GIF version

Theorem lclkrlem2m 41502
Description: Lemma for lclkr 41516. Construct a vector 𝐵 that makes the sum of functionals zero. Combine with 𝐵𝑉 to shorten overall proof. (Contributed by NM, 17-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2m.w (𝜑𝑈 ∈ LVec)
lclkrlem2m.b 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
lclkrlem2m.n (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
Assertion
Ref Expression
lclkrlem2m (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))

Proof of Theorem lclkrlem2m
StepHypRef Expression
1 lclkrlem2m.b . . 3 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
2 lclkrlem2m.w . . . . . 6 (𝜑𝑈 ∈ LVec)
3 lveclmod 21010 . . . . . 6 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
42, 3syl 17 . . . . 5 (𝜑𝑈 ∈ LMod)
5 lmodgrp 20770 . . . . 5 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
64, 5syl 17 . . . 4 (𝜑𝑈 ∈ Grp)
7 lclkrlem2m.x . . . 4 (𝜑𝑋𝑉)
8 lclkrlem2m.s . . . . . . . 8 𝑆 = (Scalar‘𝑈)
98lmodring 20771 . . . . . . 7 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
104, 9syl 17 . . . . . 6 (𝜑𝑆 ∈ Ring)
11 lclkrlem2m.f . . . . . . . 8 𝐹 = (LFnl‘𝑈)
12 lclkrlem2m.d . . . . . . . 8 𝐷 = (LDual‘𝑈)
13 lclkrlem2m.p . . . . . . . 8 + = (+g𝐷)
14 lclkrlem2m.e . . . . . . . 8 (𝜑𝐸𝐹)
15 lclkrlem2m.g . . . . . . . 8 (𝜑𝐺𝐹)
1611, 12, 13, 4, 14, 15ldualvaddcl 39113 . . . . . . 7 (𝜑 → (𝐸 + 𝐺) ∈ 𝐹)
17 eqid 2729 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
18 lclkrlem2m.v . . . . . . . 8 𝑉 = (Base‘𝑈)
198, 17, 18, 11lflcl 39047 . . . . . . 7 ((𝑈 ∈ LVec ∧ (𝐸 + 𝐺) ∈ 𝐹𝑋𝑉) → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆))
202, 16, 7, 19syl3anc 1373 . . . . . 6 (𝜑 → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆))
218lvecdrng 21009 . . . . . . . 8 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
222, 21syl 17 . . . . . . 7 (𝜑𝑆 ∈ DivRing)
23 lclkrlem2m.y . . . . . . . 8 (𝜑𝑌𝑉)
248, 17, 18, 11lflcl 39047 . . . . . . . 8 ((𝑈 ∈ LVec ∧ (𝐸 + 𝐺) ∈ 𝐹𝑌𝑉) → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))
252, 16, 23, 24syl3anc 1373 . . . . . . 7 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))
26 lclkrlem2m.n . . . . . . 7 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
27 lclkrlem2m.z . . . . . . . 8 0 = (0g𝑆)
28 lclkrlem2m.i . . . . . . . 8 𝐼 = (invr𝑆)
2917, 27, 28drnginvrcl 20638 . . . . . . 7 ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆))
3022, 25, 26, 29syl3anc 1373 . . . . . 6 (𝜑 → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆))
31 lclkrlem2m.q . . . . . . 7 × = (.r𝑆)
3217, 31ringcl 20135 . . . . . 6 ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
3310, 20, 30, 32syl3anc 1373 . . . . 5 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
34 lclkrlem2m.t . . . . . 6 · = ( ·𝑠𝑈)
3518, 8, 34, 17lmodvscl 20781 . . . . 5 ((𝑈 ∈ LMod ∧ (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌𝑉) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)
364, 33, 23, 35syl3anc 1373 . . . 4 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)
37 lclkrlem2m.m . . . . 5 = (-g𝑈)
3818, 37grpsubcl 18899 . . . 4 ((𝑈 ∈ Grp ∧ 𝑋𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉) → (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ 𝑉)
396, 7, 36, 38syl3anc 1373 . . 3 (𝜑 → (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ 𝑉)
401, 39eqeltrid 2832 . 2 (𝜑𝐵𝑉)
411fveq2i 6825 . . 3 ((𝐸 + 𝐺)‘𝐵) = ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)))
42 eqid 2729 . . . . . 6 (-g𝑆) = (-g𝑆)
438, 42, 18, 37, 11lflsub 39050 . . . . 5 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ (𝑋𝑉 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ 𝑉)) → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))))
444, 16, 7, 36, 43syl112anc 1376 . . . 4 (𝜑 → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))))
458, 17, 31, 18, 34, 11lflmul 39051 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹 ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌𝑉)) → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)))
464, 16, 33, 23, 45syl112anc 1376 . . . . . 6 (𝜑 → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)))
4717, 31ringass 20138 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))))
4810, 20, 30, 25, 47syl13anc 1374 . . . . . . 7 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))))
49 eqid 2729 . . . . . . . . . 10 (1r𝑆) = (1r𝑆)
5017, 27, 31, 49, 28drnginvrl 20641 . . . . . . . . 9 ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)) = (1r𝑆))
5122, 25, 26, 50syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌)) = (1r𝑆))
5251oveq2d 7365 . . . . . . 7 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × ((𝐼‘((𝐸 + 𝐺)‘𝑌)) × ((𝐸 + 𝐺)‘𝑌))) = (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)))
5348, 52eqtrd 2764 . . . . . 6 (𝜑 → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) × ((𝐸 + 𝐺)‘𝑌)) = (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)))
5417, 31, 49ringridm 20155 . . . . . . 7 ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)) = ((𝐸 + 𝐺)‘𝑋))
5510, 20, 54syl2anc 584 . . . . . 6 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (1r𝑆)) = ((𝐸 + 𝐺)‘𝑋))
5646, 53, 553eqtrd 2768 . . . . 5 (𝜑 → ((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) = ((𝐸 + 𝐺)‘𝑋))
5756oveq2d 7365 . . . 4 (𝜑 → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)))
58 ringgrp 20123 . . . . . 6 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
5910, 58syl 17 . . . . 5 (𝜑𝑆 ∈ Grp)
6017, 27, 42grpsubid 18903 . . . . 5 ((𝑆 ∈ Grp ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)) = 0 )
6159, 20, 60syl2anc 584 . . . 4 (𝜑 → (((𝐸 + 𝐺)‘𝑋)(-g𝑆)((𝐸 + 𝐺)‘𝑋)) = 0 )
6244, 57, 613eqtrd 2768 . . 3 (𝜑 → ((𝐸 + 𝐺)‘(𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))) = 0 )
6341, 62eqtrid 2776 . 2 (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 0 )
6440, 63jca 511 1 (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  Grpcgrp 18812  -gcsg 18814  1rcur 20066  Ringcrg 20118  invrcinvr 20272  DivRingcdr 20614  LModclmod 20763  LVecclvec 21006  LFnlclfn 39040  LDualcld 39106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20765  df-lvec 21007  df-lfl 39041  df-ldual 39107
This theorem is referenced by:  lclkrlem2o  41504  lclkrlem2q  41506
  Copyright terms: Public domain W3C validator