Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvbasecl Structured version   Visualization version   GIF version

Theorem lcdvbasecl 39589
Description: Closure of the value of a vector (functional) in the closed kernel dual space. (Contributed by NM, 28-Mar-2015.)
Hypotheses
Ref Expression
lcdvbasecl.h 𝐻 = (LHyp‘𝐾)
lcdvbasecl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdvbasecl.v 𝑉 = (Base‘𝑈)
lcdvbasecl.s 𝑆 = (Scalar‘𝑈)
lcdvbasecl.r 𝑅 = (Base‘𝑆)
lcdvbasecl.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdvbasecl.e 𝐸 = (Base‘𝐶)
lcdvbasecl.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcdvbasecl.f (𝜑𝐹𝐸)
lcdvbasecl.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lcdvbasecl (𝜑 → (𝐹𝑋) ∈ 𝑅)

Proof of Theorem lcdvbasecl
StepHypRef Expression
1 lcdvbasecl.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcdvbasecl.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 lcdvbasecl.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 39103 . 2 (𝜑𝑈 ∈ LMod)
5 lcdvbasecl.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 lcdvbasecl.e . . 3 𝐸 = (Base‘𝐶)
7 eqid 2739 . . 3 (LFnl‘𝑈) = (LFnl‘𝑈)
8 lcdvbasecl.f . . 3 (𝜑𝐹𝐸)
91, 5, 6, 2, 7, 3, 8lcdvbaselfl 39588 . 2 (𝜑𝐹 ∈ (LFnl‘𝑈))
10 lcdvbasecl.x . 2 (𝜑𝑋𝑉)
11 lcdvbasecl.s . . 3 𝑆 = (Scalar‘𝑈)
12 lcdvbasecl.r . . 3 𝑅 = (Base‘𝑆)
13 lcdvbasecl.v . . 3 𝑉 = (Base‘𝑈)
1411, 12, 13, 7lflcl 37057 . 2 ((𝑈 ∈ LMod ∧ 𝐹 ∈ (LFnl‘𝑈) ∧ 𝑋𝑉) → (𝐹𝑋) ∈ 𝑅)
154, 9, 10, 14syl3anc 1369 1 (𝜑 → (𝐹𝑋) ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cfv 6430  Basecbs 16893  Scalarcsca 16946  LModclmod 20104  LFnlclfn 37050  HLchlt 37343  LHypclh 37977  DVecHcdvh 39071  LCDualclcd 39579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-riotaBAD 36946
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-tpos 8026  df-undef 8073  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-sca 16959  df-vsca 16960  df-0g 17133  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-p1 18125  df-lat 18131  df-clat 18198  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-grp 18561  df-minusg 18562  df-mgp 19702  df-ur 19719  df-ring 19766  df-oppr 19843  df-dvdsr 19864  df-unit 19865  df-invr 19895  df-dvr 19906  df-drng 19974  df-lmod 20106  df-lvec 20346  df-lfl 37051  df-ldual 37117  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-llines 37491  df-lplanes 37492  df-lvols 37493  df-lines 37494  df-psubsp 37496  df-pmap 37497  df-padd 37789  df-lhyp 37981  df-laut 37982  df-ldil 38097  df-ltrn 38098  df-trl 38152  df-tendo 38748  df-edring 38750  df-dvech 39072  df-lcdual 39580
This theorem is referenced by:  lcdvsubval  39611  hdmapipcl  39898
  Copyright terms: Public domain W3C validator