Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem2 Structured version   Visualization version   GIF version

Theorem lcfrlem2 38749
 Description: Lemma for lcfr 38791. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
lcfrlem2.l 𝐿 = (LKer‘𝑈)
Assertion
Ref Expression
lcfrlem2 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿𝐻))

Proof of Theorem lcfrlem2
StepHypRef Expression
1 lcfrlem1.s . . . . . 6 𝑆 = (Scalar‘𝑈)
2 eqid 2824 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 lcfrlem1.f . . . . . 6 𝐹 = (LFnl‘𝑈)
4 lcfrlem2.l . . . . . 6 𝐿 = (LKer‘𝑈)
5 lcfrlem1.d . . . . . 6 𝐷 = (LDual‘𝑈)
6 lcfrlem1.t . . . . . 6 · = ( ·𝑠𝐷)
7 lcfrlem1.u . . . . . 6 (𝜑𝑈 ∈ LVec)
8 lcfrlem1.g . . . . . 6 (𝜑𝐺𝐹)
9 lveclmod 19871 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
107, 9syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
111lmodring 19635 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
1210, 11syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
131lvecdrng 19870 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
147, 13syl 17 . . . . . . . 8 (𝜑𝑆 ∈ DivRing)
15 lcfrlem1.x . . . . . . . . 9 (𝜑𝑋𝑉)
16 lcfrlem1.v . . . . . . . . . 10 𝑉 = (Base‘𝑈)
171, 2, 16, 3lflcl 36270 . . . . . . . . 9 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
187, 8, 15, 17syl3anc 1368 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
19 lcfrlem1.n . . . . . . . 8 (𝜑 → (𝐺𝑋) ≠ 0 )
20 lcfrlem1.z . . . . . . . . 9 0 = (0g𝑆)
21 lcfrlem1.i . . . . . . . . 9 𝐼 = (invr𝑆)
222, 20, 21drnginvrcl 19512 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2314, 18, 19, 22syl3anc 1368 . . . . . . 7 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
24 lcfrlem1.e . . . . . . . 8 (𝜑𝐸𝐹)
251, 2, 16, 3lflcl 36270 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
267, 24, 15, 25syl3anc 1368 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
27 lcfrlem1.q . . . . . . . 8 × = (.r𝑆)
282, 27ringcl 19307 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
2912, 23, 26, 28syl3anc 1368 . . . . . 6 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
301, 2, 3, 4, 5, 6, 7, 8, 29lkrss 36374 . . . . 5 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))
313, 1, 2, 5, 6, 10, 29, 8ldualvscl 36345 . . . . . 6 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
32 ringgrp 19298 . . . . . . . 8 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
3312, 32syl 17 . . . . . . 7 (𝜑𝑆 ∈ Grp)
34 eqid 2824 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
352, 34ringidcl 19314 . . . . . . . 8 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
3612, 35syl 17 . . . . . . 7 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
37 eqid 2824 . . . . . . . 8 (invg𝑆) = (invg𝑆)
382, 37grpinvcl 18147 . . . . . . 7 ((𝑆 ∈ Grp ∧ (1r𝑆) ∈ (Base‘𝑆)) → ((invg𝑆)‘(1r𝑆)) ∈ (Base‘𝑆))
3933, 36, 38syl2anc 587 . . . . . 6 (𝜑 → ((invg𝑆)‘(1r𝑆)) ∈ (Base‘𝑆))
401, 2, 3, 4, 5, 6, 7, 31, 39lkrss 36374 . . . . 5 (𝜑 → (𝐿‘(((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
4130, 40sstrd 3962 . . . 4 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
42 sslin 4195 . . . 4 ((𝐿𝐺) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))) → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
4341, 42syl 17 . . 3 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
44 eqid 2824 . . . 4 (+g𝐷) = (+g𝐷)
453, 1, 2, 5, 6, 10, 39, 31ldualvscl 36345 . . . 4 (𝜑 → (((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ∈ 𝐹)
463, 4, 5, 44, 10, 24, 45lkrin 36370 . . 3 (𝜑 → ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))) ⊆ (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
4743, 46sstrd 3962 . 2 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
48 lcfrlem1.h . . . 4 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
4948fveq2i 6661 . . 3 (𝐿𝐻) = (𝐿‘(𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))
50 lcfrlem1.m . . . . 5 = (-g𝐷)
511, 37, 34, 3, 5, 44, 6, 50, 10, 24, 31ldualvsub 36361 . . . 4 (𝜑 → (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) = (𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
5251fveq2d 6662 . . 3 (𝜑 → (𝐿‘(𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))) = (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
5349, 52syl5req 2872 . 2 (𝜑 → (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))) = (𝐿𝐻))
5447, 53sseqtrd 3992 1 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿𝐻))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115   ≠ wne 3014   ∩ cin 3918   ⊆ wss 3919  ‘cfv 6343  (class class class)co 7145  Basecbs 16479  +gcplusg 16561  .rcmulr 16562  Scalarcsca 16564   ·𝑠 cvsca 16565  0gc0g 16709  Grpcgrp 18099  invgcminusg 18100  -gcsg 18101  1rcur 19247  Ringcrg 19293  invrcinvr 19417  DivRingcdr 19495  LModclmod 19627  LVecclvec 19867  LFnlclfn 36263  LKerclk 36291  LDualcld 36329 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7399  df-om 7571  df-1st 7679  df-2nd 7680  df-tpos 7882  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-3 11694  df-4 11695  df-5 11696  df-6 11697  df-n0 11891  df-z 11975  df-uz 12237  df-fz 12891  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-sca 16577  df-vsca 16578  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103  df-sbg 18104  df-cmn 18904  df-abl 18905  df-mgp 19236  df-ur 19248  df-ring 19295  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lvec 19868  df-lfl 36264  df-lkr 36292  df-ldual 36330 This theorem is referenced by:  lcfrlem35  38783
 Copyright terms: Public domain W3C validator