Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem2 Structured version   Visualization version   GIF version

Theorem lcfrlem2 41662
Description: Lemma for lcfr 41704. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
lcfrlem2.l 𝐿 = (LKer‘𝑈)
Assertion
Ref Expression
lcfrlem2 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿𝐻))

Proof of Theorem lcfrlem2
StepHypRef Expression
1 lcfrlem1.s . . . . . 6 𝑆 = (Scalar‘𝑈)
2 eqid 2733 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 lcfrlem1.f . . . . . 6 𝐹 = (LFnl‘𝑈)
4 lcfrlem2.l . . . . . 6 𝐿 = (LKer‘𝑈)
5 lcfrlem1.d . . . . . 6 𝐷 = (LDual‘𝑈)
6 lcfrlem1.t . . . . . 6 · = ( ·𝑠𝐷)
7 lcfrlem1.u . . . . . 6 (𝜑𝑈 ∈ LVec)
8 lcfrlem1.g . . . . . 6 (𝜑𝐺𝐹)
9 lveclmod 21042 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
107, 9syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
111lmodring 20803 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
1210, 11syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
131lvecdrng 21041 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
147, 13syl 17 . . . . . . . 8 (𝜑𝑆 ∈ DivRing)
15 lcfrlem1.x . . . . . . . . 9 (𝜑𝑋𝑉)
16 lcfrlem1.v . . . . . . . . . 10 𝑉 = (Base‘𝑈)
171, 2, 16, 3lflcl 39183 . . . . . . . . 9 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
187, 8, 15, 17syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
19 lcfrlem1.n . . . . . . . 8 (𝜑 → (𝐺𝑋) ≠ 0 )
20 lcfrlem1.z . . . . . . . . 9 0 = (0g𝑆)
21 lcfrlem1.i . . . . . . . . 9 𝐼 = (invr𝑆)
222, 20, 21drnginvrcl 20670 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2314, 18, 19, 22syl3anc 1373 . . . . . . 7 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
24 lcfrlem1.e . . . . . . . 8 (𝜑𝐸𝐹)
251, 2, 16, 3lflcl 39183 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
267, 24, 15, 25syl3anc 1373 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
27 lcfrlem1.q . . . . . . . 8 × = (.r𝑆)
282, 27ringcl 20170 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
2912, 23, 26, 28syl3anc 1373 . . . . . 6 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
301, 2, 3, 4, 5, 6, 7, 8, 29lkrss 39287 . . . . 5 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))
313, 1, 2, 5, 6, 10, 29, 8ldualvscl 39258 . . . . . 6 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
32 ringgrp 20158 . . . . . . . 8 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
3312, 32syl 17 . . . . . . 7 (𝜑𝑆 ∈ Grp)
34 eqid 2733 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
352, 34ringidcl 20185 . . . . . . . 8 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
3612, 35syl 17 . . . . . . 7 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
37 eqid 2733 . . . . . . . 8 (invg𝑆) = (invg𝑆)
382, 37grpinvcl 18902 . . . . . . 7 ((𝑆 ∈ Grp ∧ (1r𝑆) ∈ (Base‘𝑆)) → ((invg𝑆)‘(1r𝑆)) ∈ (Base‘𝑆))
3933, 36, 38syl2anc 584 . . . . . 6 (𝜑 → ((invg𝑆)‘(1r𝑆)) ∈ (Base‘𝑆))
401, 2, 3, 4, 5, 6, 7, 31, 39lkrss 39287 . . . . 5 (𝜑 → (𝐿‘(((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
4130, 40sstrd 3941 . . . 4 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
42 sslin 4192 . . . 4 ((𝐿𝐺) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))) → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
4341, 42syl 17 . . 3 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
44 eqid 2733 . . . 4 (+g𝐷) = (+g𝐷)
453, 1, 2, 5, 6, 10, 39, 31ldualvscl 39258 . . . 4 (𝜑 → (((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ∈ 𝐹)
463, 4, 5, 44, 10, 24, 45lkrin 39283 . . 3 (𝜑 → ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))) ⊆ (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
4743, 46sstrd 3941 . 2 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
48 lcfrlem1.h . . . 4 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
4948fveq2i 6831 . . 3 (𝐿𝐻) = (𝐿‘(𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))
50 lcfrlem1.m . . . . 5 = (-g𝐷)
511, 37, 34, 3, 5, 44, 6, 50, 10, 24, 31ldualvsub 39274 . . . 4 (𝜑 → (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) = (𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
5251fveq2d 6832 . . 3 (𝜑 → (𝐿‘(𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))) = (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
5349, 52eqtr2id 2781 . 2 (𝜑 → (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))) = (𝐿𝐻))
5447, 53sseqtrd 3967 1 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wne 2929  cin 3897  wss 3898  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  Scalarcsca 17166   ·𝑠 cvsca 17167  0gc0g 17345  Grpcgrp 18848  invgcminusg 18849  -gcsg 18850  1rcur 20101  Ringcrg 20153  invrcinvr 20307  DivRingcdr 20646  LModclmod 20795  LVecclvec 21038  LFnlclfn 39176  LKerclk 39204  LDualcld 39242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-nzr 20430  df-rlreg 20611  df-domn 20612  df-drng 20648  df-lmod 20797  df-lss 20867  df-lvec 21039  df-lfl 39177  df-lkr 39205  df-ldual 39243
This theorem is referenced by:  lcfrlem35  41696
  Copyright terms: Public domain W3C validator