Proof of Theorem lcfrlem2
Step | Hyp | Ref
| Expression |
1 | | lcfrlem1.s |
. . . . . 6
⊢ 𝑆 = (Scalar‘𝑈) |
2 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) |
3 | | lcfrlem1.f |
. . . . . 6
⊢ 𝐹 = (LFnl‘𝑈) |
4 | | lcfrlem2.l |
. . . . . 6
⊢ 𝐿 = (LKer‘𝑈) |
5 | | lcfrlem1.d |
. . . . . 6
⊢ 𝐷 = (LDual‘𝑈) |
6 | | lcfrlem1.t |
. . . . . 6
⊢ · = (
·𝑠 ‘𝐷) |
7 | | lcfrlem1.u |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ LVec) |
8 | | lcfrlem1.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
9 | | lveclmod 20283 |
. . . . . . . . 9
⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) |
10 | 7, 9 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) |
11 | 1 | lmodring 20046 |
. . . . . . . 8
⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
12 | 10, 11 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Ring) |
13 | 1 | lvecdrng 20282 |
. . . . . . . . 9
⊢ (𝑈 ∈ LVec → 𝑆 ∈
DivRing) |
14 | 7, 13 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ DivRing) |
15 | | lcfrlem1.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
16 | | lcfrlem1.v |
. . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑈) |
17 | 1, 2, 16, 3 | lflcl 37005 |
. . . . . . . . 9
⊢ ((𝑈 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
18 | 7, 8, 15, 17 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
19 | | lcfrlem1.n |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) |
20 | | lcfrlem1.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑆) |
21 | | lcfrlem1.i |
. . . . . . . . 9
⊢ 𝐼 = (invr‘𝑆) |
22 | 2, 20, 21 | drnginvrcl 19923 |
. . . . . . . 8
⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ (Base‘𝑆) ∧ (𝐺‘𝑋) ≠ 0 ) → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
23 | 14, 18, 19, 22 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
24 | | lcfrlem1.e |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ 𝐹) |
25 | 1, 2, 16, 3 | lflcl 37005 |
. . . . . . . 8
⊢ ((𝑈 ∈ LVec ∧ 𝐸 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
26 | 7, 24, 15, 25 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
27 | | lcfrlem1.q |
. . . . . . . 8
⊢ × =
(.r‘𝑆) |
28 | 2, 27 | ringcl 19715 |
. . . . . . 7
⊢ ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆) ∧ (𝐸‘𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
29 | 12, 23, 26, 28 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
30 | 1, 2, 3, 4, 5, 6, 7, 8, 29 | lkrss 37109 |
. . . . 5
⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))) |
31 | 3, 1, 2, 5, 6, 10,
29, 8 | ldualvscl 37080 |
. . . . . 6
⊢ (𝜑 → (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺) ∈ 𝐹) |
32 | | ringgrp 19703 |
. . . . . . . 8
⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) |
33 | 12, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Grp) |
34 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘𝑆) = (1r‘𝑆) |
35 | 2, 34 | ringidcl 19722 |
. . . . . . . 8
⊢ (𝑆 ∈ Ring →
(1r‘𝑆)
∈ (Base‘𝑆)) |
36 | 12, 35 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) |
37 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘𝑆) = (invg‘𝑆) |
38 | 2, 37 | grpinvcl 18542 |
. . . . . . 7
⊢ ((𝑆 ∈ Grp ∧
(1r‘𝑆)
∈ (Base‘𝑆))
→ ((invg‘𝑆)‘(1r‘𝑆)) ∈ (Base‘𝑆)) |
39 | 33, 36, 38 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 →
((invg‘𝑆)‘(1r‘𝑆)) ∈ (Base‘𝑆)) |
40 | 1, 2, 3, 4, 5, 6, 7, 31, 39 | lkrss 37109 |
. . . . 5
⊢ (𝜑 → (𝐿‘(((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) ⊆ (𝐿‘(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)))) |
41 | 30, 40 | sstrd 3927 |
. . . 4
⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)))) |
42 | | sslin 4165 |
. . . 4
⊢ ((𝐿‘𝐺) ⊆ (𝐿‘(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))) → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ ((𝐿‘𝐸) ∩ (𝐿‘(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))))) |
43 | 41, 42 | syl 17 |
. . 3
⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ ((𝐿‘𝐸) ∩ (𝐿‘(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))))) |
44 | | eqid 2738 |
. . . 4
⊢
(+g‘𝐷) = (+g‘𝐷) |
45 | 3, 1, 2, 5, 6, 10,
39, 31 | ldualvscl 37080 |
. . . 4
⊢ (𝜑 →
(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) ∈ 𝐹) |
46 | 3, 4, 5, 44, 10, 24, 45 | lkrin 37105 |
. . 3
⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)))) ⊆ (𝐿‘(𝐸(+g‘𝐷)(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))))) |
47 | 43, 46 | sstrd 3927 |
. 2
⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ (𝐿‘(𝐸(+g‘𝐷)(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))))) |
48 | | lcfrlem1.h |
. . . 4
⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) |
49 | 48 | fveq2i 6759 |
. . 3
⊢ (𝐿‘𝐻) = (𝐿‘(𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))) |
50 | | lcfrlem1.m |
. . . . 5
⊢ − =
(-g‘𝐷) |
51 | 1, 37, 34, 3, 5, 44, 6, 50, 10, 24, 31 | ldualvsub 37096 |
. . . 4
⊢ (𝜑 → (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) = (𝐸(+g‘𝐷)(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)))) |
52 | 51 | fveq2d 6760 |
. . 3
⊢ (𝜑 → (𝐿‘(𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))) = (𝐿‘(𝐸(+g‘𝐷)(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))))) |
53 | 49, 52 | eqtr2id 2792 |
. 2
⊢ (𝜑 → (𝐿‘(𝐸(+g‘𝐷)(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)))) = (𝐿‘𝐻)) |
54 | 47, 53 | sseqtrd 3957 |
1
⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ (𝐿‘𝐻)) |