Proof of Theorem lcfrlem2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lcfrlem1.s | . . . . . 6
⊢ 𝑆 = (Scalar‘𝑈) | 
| 2 |  | eqid 2736 | . . . . . 6
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 3 |  | lcfrlem1.f | . . . . . 6
⊢ 𝐹 = (LFnl‘𝑈) | 
| 4 |  | lcfrlem2.l | . . . . . 6
⊢ 𝐿 = (LKer‘𝑈) | 
| 5 |  | lcfrlem1.d | . . . . . 6
⊢ 𝐷 = (LDual‘𝑈) | 
| 6 |  | lcfrlem1.t | . . . . . 6
⊢  · = (
·𝑠 ‘𝐷) | 
| 7 |  | lcfrlem1.u | . . . . . 6
⊢ (𝜑 → 𝑈 ∈ LVec) | 
| 8 |  | lcfrlem1.g | . . . . . 6
⊢ (𝜑 → 𝐺 ∈ 𝐹) | 
| 9 |  | lveclmod 21106 | . . . . . . . . 9
⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) | 
| 10 | 7, 9 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) | 
| 11 | 1 | lmodring 20867 | . . . . . . . 8
⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) | 
| 12 | 10, 11 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Ring) | 
| 13 | 1 | lvecdrng 21105 | . . . . . . . . 9
⊢ (𝑈 ∈ LVec → 𝑆 ∈
DivRing) | 
| 14 | 7, 13 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ DivRing) | 
| 15 |  | lcfrlem1.x | . . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 16 |  | lcfrlem1.v | . . . . . . . . . 10
⊢ 𝑉 = (Base‘𝑈) | 
| 17 | 1, 2, 16, 3 | lflcl 39066 | . . . . . . . . 9
⊢ ((𝑈 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝑆)) | 
| 18 | 7, 8, 15, 17 | syl3anc 1372 | . . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑋) ∈ (Base‘𝑆)) | 
| 19 |  | lcfrlem1.n | . . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) | 
| 20 |  | lcfrlem1.z | . . . . . . . . 9
⊢  0 =
(0g‘𝑆) | 
| 21 |  | lcfrlem1.i | . . . . . . . . 9
⊢ 𝐼 = (invr‘𝑆) | 
| 22 | 2, 20, 21 | drnginvrcl 20754 | . . . . . . . 8
⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ (Base‘𝑆) ∧ (𝐺‘𝑋) ≠ 0 ) → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) | 
| 23 | 14, 18, 19, 22 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) | 
| 24 |  | lcfrlem1.e | . . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ 𝐹) | 
| 25 | 1, 2, 16, 3 | lflcl 39066 | . . . . . . . 8
⊢ ((𝑈 ∈ LVec ∧ 𝐸 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐸‘𝑋) ∈ (Base‘𝑆)) | 
| 26 | 7, 24, 15, 25 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 → (𝐸‘𝑋) ∈ (Base‘𝑆)) | 
| 27 |  | lcfrlem1.q | . . . . . . . 8
⊢  × =
(.r‘𝑆) | 
| 28 | 2, 27 | ringcl 20248 | . . . . . . 7
⊢ ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆) ∧ (𝐸‘𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) | 
| 29 | 12, 23, 26, 28 | syl3anc 1372 | . . . . . 6
⊢ (𝜑 → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) | 
| 30 | 1, 2, 3, 4, 5, 6, 7, 8, 29 | lkrss 39170 | . . . . 5
⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))) | 
| 31 | 3, 1, 2, 5, 6, 10,
29, 8 | ldualvscl 39141 | . . . . . 6
⊢ (𝜑 → (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺) ∈ 𝐹) | 
| 32 |  | ringgrp 20236 | . . . . . . . 8
⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | 
| 33 | 12, 32 | syl 17 | . . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Grp) | 
| 34 |  | eqid 2736 | . . . . . . . . 9
⊢
(1r‘𝑆) = (1r‘𝑆) | 
| 35 | 2, 34 | ringidcl 20263 | . . . . . . . 8
⊢ (𝑆 ∈ Ring →
(1r‘𝑆)
∈ (Base‘𝑆)) | 
| 36 | 12, 35 | syl 17 | . . . . . . 7
⊢ (𝜑 → (1r‘𝑆) ∈ (Base‘𝑆)) | 
| 37 |  | eqid 2736 | . . . . . . . 8
⊢
(invg‘𝑆) = (invg‘𝑆) | 
| 38 | 2, 37 | grpinvcl 19006 | . . . . . . 7
⊢ ((𝑆 ∈ Grp ∧
(1r‘𝑆)
∈ (Base‘𝑆))
→ ((invg‘𝑆)‘(1r‘𝑆)) ∈ (Base‘𝑆)) | 
| 39 | 33, 36, 38 | syl2anc 584 | . . . . . 6
⊢ (𝜑 →
((invg‘𝑆)‘(1r‘𝑆)) ∈ (Base‘𝑆)) | 
| 40 | 1, 2, 3, 4, 5, 6, 7, 31, 39 | lkrss 39170 | . . . . 5
⊢ (𝜑 → (𝐿‘(((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) ⊆ (𝐿‘(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)))) | 
| 41 | 30, 40 | sstrd 3993 | . . . 4
⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)))) | 
| 42 |  | sslin 4242 | . . . 4
⊢ ((𝐿‘𝐺) ⊆ (𝐿‘(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))) → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ ((𝐿‘𝐸) ∩ (𝐿‘(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))))) | 
| 43 | 41, 42 | syl 17 | . . 3
⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ ((𝐿‘𝐸) ∩ (𝐿‘(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))))) | 
| 44 |  | eqid 2736 | . . . 4
⊢
(+g‘𝐷) = (+g‘𝐷) | 
| 45 | 3, 1, 2, 5, 6, 10,
39, 31 | ldualvscl 39141 | . . . 4
⊢ (𝜑 →
(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) ∈ 𝐹) | 
| 46 | 3, 4, 5, 44, 10, 24, 45 | lkrin 39166 | . . 3
⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)))) ⊆ (𝐿‘(𝐸(+g‘𝐷)(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))))) | 
| 47 | 43, 46 | sstrd 3993 | . 2
⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ (𝐿‘(𝐸(+g‘𝐷)(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))))) | 
| 48 |  | lcfrlem1.h | . . . 4
⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) | 
| 49 | 48 | fveq2i 6908 | . . 3
⊢ (𝐿‘𝐻) = (𝐿‘(𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))) | 
| 50 |  | lcfrlem1.m | . . . . 5
⊢  − =
(-g‘𝐷) | 
| 51 | 1, 37, 34, 3, 5, 44, 6, 50, 10, 24, 31 | ldualvsub 39157 | . . . 4
⊢ (𝜑 → (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) = (𝐸(+g‘𝐷)(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)))) | 
| 52 | 51 | fveq2d 6909 | . . 3
⊢ (𝜑 → (𝐿‘(𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))) = (𝐿‘(𝐸(+g‘𝐷)(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺))))) | 
| 53 | 49, 52 | eqtr2id 2789 | . 2
⊢ (𝜑 → (𝐿‘(𝐸(+g‘𝐷)(((invg‘𝑆)‘(1r‘𝑆)) · (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)))) = (𝐿‘𝐻)) | 
| 54 | 47, 53 | sseqtrd 4019 | 1
⊢ (𝜑 → ((𝐿‘𝐸) ∩ (𝐿‘𝐺)) ⊆ (𝐿‘𝐻)) |