Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem2 Structured version   Visualization version   GIF version

Theorem lcfrlem2 40006
Description: Lemma for lcfr 40048. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
lcfrlem2.l 𝐿 = (LKer‘𝑈)
Assertion
Ref Expression
lcfrlem2 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿𝐻))

Proof of Theorem lcfrlem2
StepHypRef Expression
1 lcfrlem1.s . . . . . 6 𝑆 = (Scalar‘𝑈)
2 eqid 2736 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
3 lcfrlem1.f . . . . . 6 𝐹 = (LFnl‘𝑈)
4 lcfrlem2.l . . . . . 6 𝐿 = (LKer‘𝑈)
5 lcfrlem1.d . . . . . 6 𝐷 = (LDual‘𝑈)
6 lcfrlem1.t . . . . . 6 · = ( ·𝑠𝐷)
7 lcfrlem1.u . . . . . 6 (𝜑𝑈 ∈ LVec)
8 lcfrlem1.g . . . . . 6 (𝜑𝐺𝐹)
9 lveclmod 20567 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
107, 9syl 17 . . . . . . . 8 (𝜑𝑈 ∈ LMod)
111lmodring 20330 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
1210, 11syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
131lvecdrng 20566 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
147, 13syl 17 . . . . . . . 8 (𝜑𝑆 ∈ DivRing)
15 lcfrlem1.x . . . . . . . . 9 (𝜑𝑋𝑉)
16 lcfrlem1.v . . . . . . . . . 10 𝑉 = (Base‘𝑈)
171, 2, 16, 3lflcl 37526 . . . . . . . . 9 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
187, 8, 15, 17syl3anc 1371 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
19 lcfrlem1.n . . . . . . . 8 (𝜑 → (𝐺𝑋) ≠ 0 )
20 lcfrlem1.z . . . . . . . . 9 0 = (0g𝑆)
21 lcfrlem1.i . . . . . . . . 9 𝐼 = (invr𝑆)
222, 20, 21drnginvrcl 20205 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2314, 18, 19, 22syl3anc 1371 . . . . . . 7 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
24 lcfrlem1.e . . . . . . . 8 (𝜑𝐸𝐹)
251, 2, 16, 3lflcl 37526 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
267, 24, 15, 25syl3anc 1371 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
27 lcfrlem1.q . . . . . . . 8 × = (.r𝑆)
282, 27ringcl 19981 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
2912, 23, 26, 28syl3anc 1371 . . . . . 6 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
301, 2, 3, 4, 5, 6, 7, 8, 29lkrss 37630 . . . . 5 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))
313, 1, 2, 5, 6, 10, 29, 8ldualvscl 37601 . . . . . 6 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
32 ringgrp 19969 . . . . . . . 8 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
3312, 32syl 17 . . . . . . 7 (𝜑𝑆 ∈ Grp)
34 eqid 2736 . . . . . . . . 9 (1r𝑆) = (1r𝑆)
352, 34ringidcl 19989 . . . . . . . 8 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
3612, 35syl 17 . . . . . . 7 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
37 eqid 2736 . . . . . . . 8 (invg𝑆) = (invg𝑆)
382, 37grpinvcl 18798 . . . . . . 7 ((𝑆 ∈ Grp ∧ (1r𝑆) ∈ (Base‘𝑆)) → ((invg𝑆)‘(1r𝑆)) ∈ (Base‘𝑆))
3933, 36, 38syl2anc 584 . . . . . 6 (𝜑 → ((invg𝑆)‘(1r𝑆)) ∈ (Base‘𝑆))
401, 2, 3, 4, 5, 6, 7, 31, 39lkrss 37630 . . . . 5 (𝜑 → (𝐿‘(((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
4130, 40sstrd 3954 . . . 4 (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
42 sslin 4194 . . . 4 ((𝐿𝐺) ⊆ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))) → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
4341, 42syl 17 . . 3 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
44 eqid 2736 . . . 4 (+g𝐷) = (+g𝐷)
453, 1, 2, 5, 6, 10, 39, 31ldualvscl 37601 . . . 4 (𝜑 → (((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ∈ 𝐹)
463, 4, 5, 44, 10, 24, 45lkrin 37626 . . 3 (𝜑 → ((𝐿𝐸) ∩ (𝐿‘(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))) ⊆ (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
4743, 46sstrd 3954 . 2 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
48 lcfrlem1.h . . . 4 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
4948fveq2i 6845 . . 3 (𝐿𝐻) = (𝐿‘(𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))
50 lcfrlem1.m . . . . 5 = (-g𝐷)
511, 37, 34, 3, 5, 44, 6, 50, 10, 24, 31ldualvsub 37617 . . . 4 (𝜑 → (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) = (𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))))
5251fveq2d 6846 . . 3 (𝜑 → (𝐿‘(𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))) = (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))))
5349, 52eqtr2id 2789 . 2 (𝜑 → (𝐿‘(𝐸(+g𝐷)(((invg𝑆)‘(1r𝑆)) · (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)))) = (𝐿𝐻))
5447, 53sseqtrd 3984 1 (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2943  cin 3909  wss 3910  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  Grpcgrp 18748  invgcminusg 18749  -gcsg 18750  1rcur 19913  Ringcrg 19964  invrcinvr 20100  DivRingcdr 20185  LModclmod 20322  LVecclvec 20563  LFnlclfn 37519  LKerclk 37547  LDualcld 37585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lvec 20564  df-lfl 37520  df-lkr 37548  df-ldual 37586
This theorem is referenced by:  lcfrlem35  40040
  Copyright terms: Public domain W3C validator