Step | Hyp | Ref
| Expression |
1 | | lcfl7lem.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | lcfl7lem.o |
. . . . . 6
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
3 | | lcfl7lem.u |
. . . . . 6
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
4 | | lcfl7lem.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑈) |
5 | | lcfl7lem.z |
. . . . . 6
⊢ 0 =
(0g‘𝑈) |
6 | | lcfl7lem.a |
. . . . . 6
⊢ + =
(+g‘𝑈) |
7 | | lcfl7lem.t |
. . . . . 6
⊢ · = (
·𝑠 ‘𝑈) |
8 | | lcfl7lem.l |
. . . . . 6
⊢ 𝐿 = (LKer‘𝑈) |
9 | | lcfl7lem.s |
. . . . . 6
⊢ 𝑆 = (Scalar‘𝑈) |
10 | | lcfl7lem.r |
. . . . . 6
⊢ 𝑅 = (Base‘𝑆) |
11 | | lcfl7lem.g |
. . . . . 6
⊢ 𝐺 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))) |
12 | | lcfl7lem.k |
. . . . . 6
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
13 | | lcfl7lem.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 | dochsnkr2cl 39488 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) |
15 | 14 | eldifad 3899 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ( ⊥ ‘(𝐿‘𝐺))) |
16 | | lcfl7lem.gj |
. . . . . . . 8
⊢ (𝜑 → 𝐺 = 𝐽) |
17 | 16 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 → (𝐿‘𝐺) = (𝐿‘𝐽)) |
18 | | lcfl7lem.j |
. . . . . . . 8
⊢ 𝐽 = (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌)))) |
19 | | lcfl7lem.x2 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
18, 12, 19 | dochsnkr2 39487 |
. . . . . . 7
⊢ (𝜑 → (𝐿‘𝐽) = ( ⊥ ‘{𝑌})) |
21 | 17, 20 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
22 | 21 | fveq2d 6778 |
. . . . 5
⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) = ( ⊥ ‘( ⊥
‘{𝑌}))) |
23 | | eqid 2738 |
. . . . . . 7
⊢
(LSpan‘𝑈) =
(LSpan‘𝑈) |
24 | 19 | eldifad 3899 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
25 | 24 | snssd 4742 |
. . . . . . 7
⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
26 | 1, 3, 2, 4, 23, 12, 25 | dochocsp 39393 |
. . . . . 6
⊢ (𝜑 → ( ⊥
‘((LSpan‘𝑈)‘{𝑌})) = ( ⊥ ‘{𝑌})) |
27 | 26 | fveq2d 6778 |
. . . . 5
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘((LSpan‘𝑈)‘{𝑌}))) = ( ⊥ ‘( ⊥
‘{𝑌}))) |
28 | | eqid 2738 |
. . . . . . . 8
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) |
29 | 1, 3, 4, 23, 28 | dihlsprn 39345 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑌 ∈ 𝑉) → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
30 | 12, 24, 29 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
31 | 1, 28, 2 | dochoc 39381 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘((LSpan‘𝑈)‘{𝑌}))) = ((LSpan‘𝑈)‘{𝑌})) |
32 | 12, 30, 31 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘((LSpan‘𝑈)‘{𝑌}))) = ((LSpan‘𝑈)‘{𝑌})) |
33 | 22, 27, 32 | 3eqtr2d 2784 |
. . . 4
⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) = ((LSpan‘𝑈)‘{𝑌})) |
34 | 15, 33 | eleqtrd 2841 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ((LSpan‘𝑈)‘{𝑌})) |
35 | 1, 3, 12 | dvhlmod 39124 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ LMod) |
36 | 9, 10, 4, 7, 23 | lspsnel 20265 |
. . . 4
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}) ↔ ∃𝑠 ∈ 𝑅 𝑋 = (𝑠 · 𝑌))) |
37 | 35, 24, 36 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}) ↔ ∃𝑠 ∈ 𝑅 𝑋 = (𝑠 · 𝑌))) |
38 | 34, 37 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑠 ∈ 𝑅 𝑋 = (𝑠 · 𝑌)) |
39 | | simp3 1137 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → 𝑋 = (𝑠 · 𝑌)) |
40 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑋 = (𝑠 · 𝑌) → (𝐺‘𝑋) = (𝐺‘(𝑠 · 𝑌))) |
41 | 40 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → (𝐺‘𝑋) = (𝐺‘(𝑠 · 𝑌))) |
42 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(1r‘𝑆) = (1r‘𝑆) |
43 | 1, 2, 3, 4, 6, 7, 5, 9, 10, 42, 12, 19, 18 | dochfl1 39490 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽‘𝑌) = (1r‘𝑆)) |
44 | 16 | fveq1d 6776 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘𝑌) = (𝐽‘𝑌)) |
45 | 1, 2, 3, 4, 6, 7, 5, 9, 10, 42, 12, 13, 11 | dochfl1 39490 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘𝑋) = (1r‘𝑆)) |
46 | 43, 44, 45 | 3eqtr4rd 2789 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝑋) = (𝐺‘𝑌)) |
47 | 46 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → (𝐺‘𝑋) = (𝐺‘𝑌)) |
48 | 35 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → 𝑈 ∈ LMod) |
49 | | lcfl7lem.f |
. . . . . . . . . . . 12
⊢ 𝐹 = (LFnl‘𝑈) |
50 | 1, 2, 3, 4, 5, 6, 7, 49, 9, 10, 11, 12, 13 | dochflcl 39489 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
51 | 50 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → 𝐺 ∈ 𝐹) |
52 | | simp2 1136 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → 𝑠 ∈ 𝑅) |
53 | 24 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → 𝑌 ∈ 𝑉) |
54 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘𝑆) = (.r‘𝑆) |
55 | 9, 10, 54, 4, 7, 49 | lflmul 37082 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (𝑠 ∈ 𝑅 ∧ 𝑌 ∈ 𝑉)) → (𝐺‘(𝑠 · 𝑌)) = (𝑠(.r‘𝑆)(𝐺‘𝑌))) |
56 | 48, 51, 52, 53, 55 | syl112anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → (𝐺‘(𝑠 · 𝑌)) = (𝑠(.r‘𝑆)(𝐺‘𝑌))) |
57 | 41, 47, 56 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → (𝐺‘𝑌) = (𝑠(.r‘𝑆)(𝐺‘𝑌))) |
58 | 57 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → ((𝐺‘𝑌)(.r‘𝑆)((invr‘𝑆)‘(𝐺‘𝑌))) = ((𝑠(.r‘𝑆)(𝐺‘𝑌))(.r‘𝑆)((invr‘𝑆)‘(𝐺‘𝑌)))) |
59 | 9 | lmodring 20131 |
. . . . . . . . . 10
⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
60 | 35, 59 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ Ring) |
61 | 60 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → 𝑆 ∈ Ring) |
62 | 9, 10, 4, 49 | lflcl 37078 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑌 ∈ 𝑉) → (𝐺‘𝑌) ∈ 𝑅) |
63 | 35, 50, 24, 62 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘𝑌) ∈ 𝑅) |
64 | 63 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → (𝐺‘𝑌) ∈ 𝑅) |
65 | 1, 3, 12 | dvhlvec 39123 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ LVec) |
66 | 9 | lvecdrng 20367 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ LVec → 𝑆 ∈
DivRing) |
67 | 65, 66 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ DivRing) |
68 | 44, 43 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘𝑌) = (1r‘𝑆)) |
69 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑆) = (0g‘𝑆) |
70 | 69, 42 | drngunz 20006 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ DivRing →
(1r‘𝑆)
≠ (0g‘𝑆)) |
71 | 67, 70 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (1r‘𝑆) ≠
(0g‘𝑆)) |
72 | 68, 71 | eqnetrd 3011 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘𝑌) ≠ (0g‘𝑆)) |
73 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(invr‘𝑆) = (invr‘𝑆) |
74 | 10, 69, 73 | drnginvrcl 20008 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑌) ∈ 𝑅 ∧ (𝐺‘𝑌) ≠ (0g‘𝑆)) →
((invr‘𝑆)‘(𝐺‘𝑌)) ∈ 𝑅) |
75 | 67, 63, 72, 74 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 →
((invr‘𝑆)‘(𝐺‘𝑌)) ∈ 𝑅) |
76 | 75 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → ((invr‘𝑆)‘(𝐺‘𝑌)) ∈ 𝑅) |
77 | 10, 54 | ringass 19803 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ (𝑠 ∈ 𝑅 ∧ (𝐺‘𝑌) ∈ 𝑅 ∧ ((invr‘𝑆)‘(𝐺‘𝑌)) ∈ 𝑅)) → ((𝑠(.r‘𝑆)(𝐺‘𝑌))(.r‘𝑆)((invr‘𝑆)‘(𝐺‘𝑌))) = (𝑠(.r‘𝑆)((𝐺‘𝑌)(.r‘𝑆)((invr‘𝑆)‘(𝐺‘𝑌))))) |
78 | 61, 52, 64, 76, 77 | syl13anc 1371 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → ((𝑠(.r‘𝑆)(𝐺‘𝑌))(.r‘𝑆)((invr‘𝑆)‘(𝐺‘𝑌))) = (𝑠(.r‘𝑆)((𝐺‘𝑌)(.r‘𝑆)((invr‘𝑆)‘(𝐺‘𝑌))))) |
79 | 10, 69, 54, 42, 73 | drnginvrr 20011 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑌) ∈ 𝑅 ∧ (𝐺‘𝑌) ≠ (0g‘𝑆)) → ((𝐺‘𝑌)(.r‘𝑆)((invr‘𝑆)‘(𝐺‘𝑌))) = (1r‘𝑆)) |
80 | 67, 63, 72, 79 | syl3anc 1370 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐺‘𝑌)(.r‘𝑆)((invr‘𝑆)‘(𝐺‘𝑌))) = (1r‘𝑆)) |
81 | 80 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → ((𝐺‘𝑌)(.r‘𝑆)((invr‘𝑆)‘(𝐺‘𝑌))) = (1r‘𝑆)) |
82 | 81 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → (𝑠(.r‘𝑆)((𝐺‘𝑌)(.r‘𝑆)((invr‘𝑆)‘(𝐺‘𝑌)))) = (𝑠(.r‘𝑆)(1r‘𝑆))) |
83 | 58, 78, 82 | 3eqtrrd 2783 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → (𝑠(.r‘𝑆)(1r‘𝑆)) = ((𝐺‘𝑌)(.r‘𝑆)((invr‘𝑆)‘(𝐺‘𝑌)))) |
84 | 10, 54, 42 | ringridm 19811 |
. . . . . . 7
⊢ ((𝑆 ∈ Ring ∧ 𝑠 ∈ 𝑅) → (𝑠(.r‘𝑆)(1r‘𝑆)) = 𝑠) |
85 | 61, 52, 84 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → (𝑠(.r‘𝑆)(1r‘𝑆)) = 𝑠) |
86 | 83, 85, 81 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → 𝑠 = (1r‘𝑆)) |
87 | | oveq1 7282 |
. . . . . 6
⊢ (𝑠 = (1r‘𝑆) → (𝑠 · 𝑌) = ((1r‘𝑆) · 𝑌)) |
88 | 4, 9, 7, 42 | lmodvs1 20151 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → ((1r‘𝑆) · 𝑌) = 𝑌) |
89 | 35, 24, 88 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 →
((1r‘𝑆)
·
𝑌) = 𝑌) |
90 | 89 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → ((1r‘𝑆) · 𝑌) = 𝑌) |
91 | 87, 90 | sylan9eqr 2800 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) ∧ 𝑠 = (1r‘𝑆)) → (𝑠 · 𝑌) = 𝑌) |
92 | 86, 91 | mpdan 684 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → (𝑠 · 𝑌) = 𝑌) |
93 | 39, 92 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑅 ∧ 𝑋 = (𝑠 · 𝑌)) → 𝑋 = 𝑌) |
94 | 93 | rexlimdv3a 3215 |
. 2
⊢ (𝜑 → (∃𝑠 ∈ 𝑅 𝑋 = (𝑠 · 𝑌) → 𝑋 = 𝑌)) |
95 | 38, 94 | mpd 15 |
1
⊢ (𝜑 → 𝑋 = 𝑌) |