Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl7lem Structured version   Visualization version   GIF version

Theorem lcfl7lem 38109
Description: Lemma for lcfl7N 38111. If two functionals 𝐺 and 𝐽 are equal, they are determined by the same vector. (Contributed by NM, 4-Jan-2015.)
Hypotheses
Ref Expression
lcfl7lem.h 𝐻 = (LHyp‘𝐾)
lcfl7lem.o = ((ocH‘𝐾)‘𝑊)
lcfl7lem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl7lem.v 𝑉 = (Base‘𝑈)
lcfl7lem.a + = (+g𝑈)
lcfl7lem.t · = ( ·𝑠𝑈)
lcfl7lem.s 𝑆 = (Scalar‘𝑈)
lcfl7lem.r 𝑅 = (Base‘𝑆)
lcfl7lem.z 0 = (0g𝑈)
lcfl7lem.f 𝐹 = (LFnl‘𝑈)
lcfl7lem.l 𝐿 = (LKer‘𝑈)
lcfl7lem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl7lem.g 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
lcfl7lem.j 𝐽 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌))))
lcfl7lem.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfl7lem.x2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfl7lem.gj (𝜑𝐺 = 𝐽)
Assertion
Ref Expression
lcfl7lem (𝜑𝑋 = 𝑌)
Distinct variable groups:   𝑣,𝑘,𝑤, +   ,𝑘,𝑣,𝑤   𝑤, 0   𝑅,𝑘,𝑣   𝑆,𝑘,𝑤   𝑣,𝑉   · ,𝑘,𝑣,𝑤   𝑘,𝑋,𝑣,𝑤   𝑘,𝑌,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑣)   𝑈(𝑤,𝑣,𝑘)   𝐹(𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑤,𝑣,𝑘)   𝐽(𝑤,𝑣,𝑘)   𝐾(𝑤,𝑣,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑤,𝑣,𝑘)   0 (𝑣,𝑘)

Proof of Theorem lcfl7lem
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lcfl7lem.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 lcfl7lem.o . . . . . 6 = ((ocH‘𝐾)‘𝑊)
3 lcfl7lem.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfl7lem.v . . . . . 6 𝑉 = (Base‘𝑈)
5 lcfl7lem.z . . . . . 6 0 = (0g𝑈)
6 lcfl7lem.a . . . . . 6 + = (+g𝑈)
7 lcfl7lem.t . . . . . 6 · = ( ·𝑠𝑈)
8 lcfl7lem.l . . . . . 6 𝐿 = (LKer‘𝑈)
9 lcfl7lem.s . . . . . 6 𝑆 = (Scalar‘𝑈)
10 lcfl7lem.r . . . . . 6 𝑅 = (Base‘𝑆)
11 lcfl7lem.g . . . . . 6 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
12 lcfl7lem.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 lcfl7lem.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dochsnkr2cl 38084 . . . . 5 (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
1514eldifad 3835 . . . 4 (𝜑𝑋 ∈ ( ‘(𝐿𝐺)))
16 lcfl7lem.gj . . . . . . . 8 (𝜑𝐺 = 𝐽)
1716fveq2d 6500 . . . . . . 7 (𝜑 → (𝐿𝐺) = (𝐿𝐽))
18 lcfl7lem.j . . . . . . . 8 𝐽 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌))))
19 lcfl7lem.x2 . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 12, 19dochsnkr2 38083 . . . . . . 7 (𝜑 → (𝐿𝐽) = ( ‘{𝑌}))
2117, 20eqtrd 2808 . . . . . 6 (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
2221fveq2d 6500 . . . . 5 (𝜑 → ( ‘(𝐿𝐺)) = ( ‘( ‘{𝑌})))
23 eqid 2772 . . . . . . 7 (LSpan‘𝑈) = (LSpan‘𝑈)
2419eldifad 3835 . . . . . . . 8 (𝜑𝑌𝑉)
2524snssd 4612 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
261, 3, 2, 4, 23, 12, 25dochocsp 37989 . . . . . 6 (𝜑 → ( ‘((LSpan‘𝑈)‘{𝑌})) = ( ‘{𝑌}))
2726fveq2d 6500 . . . . 5 (𝜑 → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ( ‘( ‘{𝑌})))
28 eqid 2772 . . . . . . . 8 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
291, 3, 4, 23, 28dihlsprn 37941 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3012, 24, 29syl2anc 576 . . . . . 6 (𝜑 → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
311, 28, 2dochoc 37977 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ((LSpan‘𝑈)‘{𝑌}))
3212, 30, 31syl2anc 576 . . . . 5 (𝜑 → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ((LSpan‘𝑈)‘{𝑌}))
3322, 27, 323eqtr2d 2814 . . . 4 (𝜑 → ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑌}))
3415, 33eleqtrd 2862 . . 3 (𝜑𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}))
351, 3, 12dvhlmod 37720 . . . 4 (𝜑𝑈 ∈ LMod)
369, 10, 4, 7, 23lspsnel 19509 . . . 4 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}) ↔ ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌)))
3735, 24, 36syl2anc 576 . . 3 (𝜑 → (𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}) ↔ ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌)))
3834, 37mpbid 224 . 2 (𝜑 → ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌))
39 simp3 1118 . . . 4 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑋 = (𝑠 · 𝑌))
40 fveq2 6496 . . . . . . . . . 10 (𝑋 = (𝑠 · 𝑌) → (𝐺𝑋) = (𝐺‘(𝑠 · 𝑌)))
41403ad2ant3 1115 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑋) = (𝐺‘(𝑠 · 𝑌)))
42 eqid 2772 . . . . . . . . . . . 12 (1r𝑆) = (1r𝑆)
431, 2, 3, 4, 6, 7, 5, 9, 10, 42, 12, 19, 18dochfl1 38086 . . . . . . . . . . 11 (𝜑 → (𝐽𝑌) = (1r𝑆))
4416fveq1d 6498 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (𝐽𝑌))
451, 2, 3, 4, 6, 7, 5, 9, 10, 42, 12, 13, 11dochfl1 38086 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋) = (1r𝑆))
4643, 44, 453eqtr4rd 2819 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) = (𝐺𝑌))
47463ad2ant1 1113 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑋) = (𝐺𝑌))
48353ad2ant1 1113 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑈 ∈ LMod)
49 lcfl7lem.f . . . . . . . . . . . 12 𝐹 = (LFnl‘𝑈)
501, 2, 3, 4, 5, 6, 7, 49, 9, 10, 11, 12, 13dochflcl 38085 . . . . . . . . . . 11 (𝜑𝐺𝐹)
51503ad2ant1 1113 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝐺𝐹)
52 simp2 1117 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑠𝑅)
53243ad2ant1 1113 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑌𝑉)
54 eqid 2772 . . . . . . . . . . 11 (.r𝑆) = (.r𝑆)
559, 10, 54, 4, 7, 49lflmul 35678 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑠𝑅𝑌𝑉)) → (𝐺‘(𝑠 · 𝑌)) = (𝑠(.r𝑆)(𝐺𝑌)))
5648, 51, 52, 53, 55syl112anc 1354 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺‘(𝑠 · 𝑌)) = (𝑠(.r𝑆)(𝐺𝑌)))
5741, 47, 563eqtr3d 2816 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑌) = (𝑠(.r𝑆)(𝐺𝑌)))
5857oveq1d 6989 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))))
599lmodring 19376 . . . . . . . . . 10 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
6035, 59syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
61603ad2ant1 1113 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑆 ∈ Ring)
629, 10, 4, 49lflcl 35674 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝐺𝐹𝑌𝑉) → (𝐺𝑌) ∈ 𝑅)
6335, 50, 24, 62syl3anc 1351 . . . . . . . . 9 (𝜑 → (𝐺𝑌) ∈ 𝑅)
64633ad2ant1 1113 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑌) ∈ 𝑅)
651, 3, 12dvhlvec 37719 . . . . . . . . . . 11 (𝜑𝑈 ∈ LVec)
669lvecdrng 19611 . . . . . . . . . . 11 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
6765, 66syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ DivRing)
6844, 43eqtrd 2808 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (1r𝑆))
69 eqid 2772 . . . . . . . . . . . . 13 (0g𝑆) = (0g𝑆)
7069, 42drngunz 19252 . . . . . . . . . . . 12 (𝑆 ∈ DivRing → (1r𝑆) ≠ (0g𝑆))
7167, 70syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝑆) ≠ (0g𝑆))
7268, 71eqnetrd 3028 . . . . . . . . . 10 (𝜑 → (𝐺𝑌) ≠ (0g𝑆))
73 eqid 2772 . . . . . . . . . . 11 (invr𝑆) = (invr𝑆)
7410, 69, 73drnginvrcl 19254 . . . . . . . . . 10 ((𝑆 ∈ DivRing ∧ (𝐺𝑌) ∈ 𝑅 ∧ (𝐺𝑌) ≠ (0g𝑆)) → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
7567, 63, 72, 74syl3anc 1351 . . . . . . . . 9 (𝜑 → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
76753ad2ant1 1113 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
7710, 54ringass 19049 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (𝑠𝑅 ∧ (𝐺𝑌) ∈ 𝑅 ∧ ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)) → ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))))
7861, 52, 64, 76, 77syl13anc 1352 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))))
7910, 69, 54, 42, 73drnginvrr 19257 . . . . . . . . . 10 ((𝑆 ∈ DivRing ∧ (𝐺𝑌) ∈ 𝑅 ∧ (𝐺𝑌) ≠ (0g𝑆)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
8067, 63, 72, 79syl3anc 1351 . . . . . . . . 9 (𝜑 → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
81803ad2ant1 1113 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
8281oveq2d 6990 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))) = (𝑠(.r𝑆)(1r𝑆)))
8358, 78, 823eqtrrd 2813 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)(1r𝑆)) = ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))))
8410, 54, 42ringridm 19057 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑠𝑅) → (𝑠(.r𝑆)(1r𝑆)) = 𝑠)
8561, 52, 84syl2anc 576 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)(1r𝑆)) = 𝑠)
8683, 85, 813eqtr3d 2816 . . . . 5 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑠 = (1r𝑆))
87 oveq1 6981 . . . . . 6 (𝑠 = (1r𝑆) → (𝑠 · 𝑌) = ((1r𝑆) · 𝑌))
884, 9, 7, 42lmodvs1 19396 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → ((1r𝑆) · 𝑌) = 𝑌)
8935, 24, 88syl2anc 576 . . . . . . 7 (𝜑 → ((1r𝑆) · 𝑌) = 𝑌)
90893ad2ant1 1113 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((1r𝑆) · 𝑌) = 𝑌)
9187, 90sylan9eqr 2830 . . . . 5 (((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) ∧ 𝑠 = (1r𝑆)) → (𝑠 · 𝑌) = 𝑌)
9286, 91mpdan 674 . . . 4 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠 · 𝑌) = 𝑌)
9339, 92eqtrd 2808 . . 3 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑋 = 𝑌)
9493rexlimdv3a 3225 . 2 (𝜑 → (∃𝑠𝑅 𝑋 = (𝑠 · 𝑌) → 𝑋 = 𝑌))
9538, 94mpd 15 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2961  wrex 3083  cdif 3820  {csn 4435  cmpt 5004  ran crn 5404  cfv 6185  crio 6934  (class class class)co 6974  Basecbs 16337  +gcplusg 16419  .rcmulr 16420  Scalarcsca 16422   ·𝑠 cvsca 16423  0gc0g 16567  1rcur 18986  Ringcrg 19032  invrcinvr 19156  DivRingcdr 19237  LModclmod 19368  LSpanclspn 19477  LVecclvec 19608  LFnlclfn 35667  LKerclk 35695  HLchlt 35960  LHypclh 36594  DVecHcdvh 37688  DIsoHcdih 37838  ocHcoch 37957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-riotaBAD 35563
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-iin 4791  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-tpos 7693  df-undef 7740  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-map 8206  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-n0 11706  df-z 11792  df-uz 12057  df-fz 12707  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-mulr 16433  df-sca 16435  df-vsca 16436  df-0g 16569  df-proset 17408  df-poset 17426  df-plt 17438  df-lub 17454  df-glb 17455  df-join 17456  df-meet 17457  df-p0 17519  df-p1 17520  df-lat 17526  df-clat 17588  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-grp 17906  df-minusg 17907  df-sbg 17908  df-subg 18072  df-cntz 18230  df-lsm 18534  df-cmn 18680  df-abl 18681  df-mgp 18975  df-ur 18987  df-ring 19034  df-oppr 19108  df-dvdsr 19126  df-unit 19127  df-invr 19157  df-dvr 19168  df-drng 19239  df-lmod 19370  df-lss 19438  df-lsp 19478  df-lvec 19609  df-lsatoms 35586  df-lshyp 35587  df-lfl 35668  df-lkr 35696  df-oposet 35786  df-ol 35788  df-oml 35789  df-covers 35876  df-ats 35877  df-atl 35908  df-cvlat 35932  df-hlat 35961  df-llines 36108  df-lplanes 36109  df-lvols 36110  df-lines 36111  df-psubsp 36113  df-pmap 36114  df-padd 36406  df-lhyp 36598  df-laut 36599  df-ldil 36714  df-ltrn 36715  df-trl 36769  df-tgrp 37353  df-tendo 37365  df-edring 37367  df-dveca 37613  df-disoa 37639  df-dvech 37689  df-dib 37749  df-dic 37783  df-dih 37839  df-doch 37958  df-djh 38005
This theorem is referenced by:  lcfl7N  38111  lcfrlem9  38160
  Copyright terms: Public domain W3C validator