Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl7lem Structured version   Visualization version   GIF version

Theorem lcfl7lem 41604
Description: Lemma for lcfl7N 41606. If two functionals 𝐺 and 𝐽 are equal, they are determined by the same vector. (Contributed by NM, 4-Jan-2015.)
Hypotheses
Ref Expression
lcfl7lem.h 𝐻 = (LHyp‘𝐾)
lcfl7lem.o = ((ocH‘𝐾)‘𝑊)
lcfl7lem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl7lem.v 𝑉 = (Base‘𝑈)
lcfl7lem.a + = (+g𝑈)
lcfl7lem.t · = ( ·𝑠𝑈)
lcfl7lem.s 𝑆 = (Scalar‘𝑈)
lcfl7lem.r 𝑅 = (Base‘𝑆)
lcfl7lem.z 0 = (0g𝑈)
lcfl7lem.f 𝐹 = (LFnl‘𝑈)
lcfl7lem.l 𝐿 = (LKer‘𝑈)
lcfl7lem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl7lem.g 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
lcfl7lem.j 𝐽 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌))))
lcfl7lem.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfl7lem.x2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfl7lem.gj (𝜑𝐺 = 𝐽)
Assertion
Ref Expression
lcfl7lem (𝜑𝑋 = 𝑌)
Distinct variable groups:   𝑣,𝑘,𝑤, +   ,𝑘,𝑣,𝑤   𝑤, 0   𝑅,𝑘,𝑣   𝑆,𝑘,𝑤   𝑣,𝑉   · ,𝑘,𝑣,𝑤   𝑘,𝑋,𝑣,𝑤   𝑘,𝑌,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑣)   𝑈(𝑤,𝑣,𝑘)   𝐹(𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑤,𝑣,𝑘)   𝐽(𝑤,𝑣,𝑘)   𝐾(𝑤,𝑣,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑤,𝑣,𝑘)   0 (𝑣,𝑘)

Proof of Theorem lcfl7lem
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lcfl7lem.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 lcfl7lem.o . . . . . 6 = ((ocH‘𝐾)‘𝑊)
3 lcfl7lem.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfl7lem.v . . . . . 6 𝑉 = (Base‘𝑈)
5 lcfl7lem.z . . . . . 6 0 = (0g𝑈)
6 lcfl7lem.a . . . . . 6 + = (+g𝑈)
7 lcfl7lem.t . . . . . 6 · = ( ·𝑠𝑈)
8 lcfl7lem.l . . . . . 6 𝐿 = (LKer‘𝑈)
9 lcfl7lem.s . . . . . 6 𝑆 = (Scalar‘𝑈)
10 lcfl7lem.r . . . . . 6 𝑅 = (Base‘𝑆)
11 lcfl7lem.g . . . . . 6 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
12 lcfl7lem.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 lcfl7lem.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dochsnkr2cl 41579 . . . . 5 (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
1514eldifad 3909 . . . 4 (𝜑𝑋 ∈ ( ‘(𝐿𝐺)))
16 lcfl7lem.gj . . . . . . . 8 (𝜑𝐺 = 𝐽)
1716fveq2d 6832 . . . . . . 7 (𝜑 → (𝐿𝐺) = (𝐿𝐽))
18 lcfl7lem.j . . . . . . . 8 𝐽 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌))))
19 lcfl7lem.x2 . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 12, 19dochsnkr2 41578 . . . . . . 7 (𝜑 → (𝐿𝐽) = ( ‘{𝑌}))
2117, 20eqtrd 2766 . . . . . 6 (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
2221fveq2d 6832 . . . . 5 (𝜑 → ( ‘(𝐿𝐺)) = ( ‘( ‘{𝑌})))
23 eqid 2731 . . . . . . 7 (LSpan‘𝑈) = (LSpan‘𝑈)
2419eldifad 3909 . . . . . . . 8 (𝜑𝑌𝑉)
2524snssd 4760 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
261, 3, 2, 4, 23, 12, 25dochocsp 41484 . . . . . 6 (𝜑 → ( ‘((LSpan‘𝑈)‘{𝑌})) = ( ‘{𝑌}))
2726fveq2d 6832 . . . . 5 (𝜑 → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ( ‘( ‘{𝑌})))
28 eqid 2731 . . . . . . . 8 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
291, 3, 4, 23, 28dihlsprn 41436 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3012, 24, 29syl2anc 584 . . . . . 6 (𝜑 → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
311, 28, 2dochoc 41472 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ((LSpan‘𝑈)‘{𝑌}))
3212, 30, 31syl2anc 584 . . . . 5 (𝜑 → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ((LSpan‘𝑈)‘{𝑌}))
3322, 27, 323eqtr2d 2772 . . . 4 (𝜑 → ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑌}))
3415, 33eleqtrd 2833 . . 3 (𝜑𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}))
351, 3, 12dvhlmod 41215 . . . 4 (𝜑𝑈 ∈ LMod)
369, 10, 4, 7, 23ellspsn 20942 . . . 4 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}) ↔ ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌)))
3735, 24, 36syl2anc 584 . . 3 (𝜑 → (𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}) ↔ ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌)))
3834, 37mpbid 232 . 2 (𝜑 → ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌))
39 simp3 1138 . . . 4 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑋 = (𝑠 · 𝑌))
40 fveq2 6828 . . . . . . . . . 10 (𝑋 = (𝑠 · 𝑌) → (𝐺𝑋) = (𝐺‘(𝑠 · 𝑌)))
41403ad2ant3 1135 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑋) = (𝐺‘(𝑠 · 𝑌)))
42 eqid 2731 . . . . . . . . . . . 12 (1r𝑆) = (1r𝑆)
431, 2, 3, 4, 6, 7, 5, 9, 10, 42, 12, 19, 18dochfl1 41581 . . . . . . . . . . 11 (𝜑 → (𝐽𝑌) = (1r𝑆))
4416fveq1d 6830 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (𝐽𝑌))
451, 2, 3, 4, 6, 7, 5, 9, 10, 42, 12, 13, 11dochfl1 41581 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋) = (1r𝑆))
4643, 44, 453eqtr4rd 2777 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) = (𝐺𝑌))
47463ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑋) = (𝐺𝑌))
48353ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑈 ∈ LMod)
49 lcfl7lem.f . . . . . . . . . . . 12 𝐹 = (LFnl‘𝑈)
501, 2, 3, 4, 5, 6, 7, 49, 9, 10, 11, 12, 13dochflcl 41580 . . . . . . . . . . 11 (𝜑𝐺𝐹)
51503ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝐺𝐹)
52 simp2 1137 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑠𝑅)
53243ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑌𝑉)
54 eqid 2731 . . . . . . . . . . 11 (.r𝑆) = (.r𝑆)
559, 10, 54, 4, 7, 49lflmul 39173 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑠𝑅𝑌𝑉)) → (𝐺‘(𝑠 · 𝑌)) = (𝑠(.r𝑆)(𝐺𝑌)))
5648, 51, 52, 53, 55syl112anc 1376 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺‘(𝑠 · 𝑌)) = (𝑠(.r𝑆)(𝐺𝑌)))
5741, 47, 563eqtr3d 2774 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑌) = (𝑠(.r𝑆)(𝐺𝑌)))
5857oveq1d 7367 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))))
599lmodring 20807 . . . . . . . . . 10 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
6035, 59syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
61603ad2ant1 1133 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑆 ∈ Ring)
629, 10, 4, 49lflcl 39169 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝐺𝐹𝑌𝑉) → (𝐺𝑌) ∈ 𝑅)
6335, 50, 24, 62syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐺𝑌) ∈ 𝑅)
64633ad2ant1 1133 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑌) ∈ 𝑅)
651, 3, 12dvhlvec 41214 . . . . . . . . . . 11 (𝜑𝑈 ∈ LVec)
669lvecdrng 21045 . . . . . . . . . . 11 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
6765, 66syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ DivRing)
6844, 43eqtrd 2766 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (1r𝑆))
69 eqid 2731 . . . . . . . . . . . . 13 (0g𝑆) = (0g𝑆)
7069, 42drngunz 20668 . . . . . . . . . . . 12 (𝑆 ∈ DivRing → (1r𝑆) ≠ (0g𝑆))
7167, 70syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝑆) ≠ (0g𝑆))
7268, 71eqnetrd 2995 . . . . . . . . . 10 (𝜑 → (𝐺𝑌) ≠ (0g𝑆))
73 eqid 2731 . . . . . . . . . . 11 (invr𝑆) = (invr𝑆)
7410, 69, 73drnginvrcl 20674 . . . . . . . . . 10 ((𝑆 ∈ DivRing ∧ (𝐺𝑌) ∈ 𝑅 ∧ (𝐺𝑌) ≠ (0g𝑆)) → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
7567, 63, 72, 74syl3anc 1373 . . . . . . . . 9 (𝜑 → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
76753ad2ant1 1133 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
7710, 54ringass 20177 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (𝑠𝑅 ∧ (𝐺𝑌) ∈ 𝑅 ∧ ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)) → ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))))
7861, 52, 64, 76, 77syl13anc 1374 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))))
7910, 69, 54, 42, 73drnginvrr 20678 . . . . . . . . . 10 ((𝑆 ∈ DivRing ∧ (𝐺𝑌) ∈ 𝑅 ∧ (𝐺𝑌) ≠ (0g𝑆)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
8067, 63, 72, 79syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
81803ad2ant1 1133 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
8281oveq2d 7368 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))) = (𝑠(.r𝑆)(1r𝑆)))
8358, 78, 823eqtrrd 2771 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)(1r𝑆)) = ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))))
8410, 54, 42ringridm 20194 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑠𝑅) → (𝑠(.r𝑆)(1r𝑆)) = 𝑠)
8561, 52, 84syl2anc 584 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)(1r𝑆)) = 𝑠)
8683, 85, 813eqtr3d 2774 . . . . 5 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑠 = (1r𝑆))
87 oveq1 7359 . . . . . 6 (𝑠 = (1r𝑆) → (𝑠 · 𝑌) = ((1r𝑆) · 𝑌))
884, 9, 7, 42lmodvs1 20829 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → ((1r𝑆) · 𝑌) = 𝑌)
8935, 24, 88syl2anc 584 . . . . . . 7 (𝜑 → ((1r𝑆) · 𝑌) = 𝑌)
90893ad2ant1 1133 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((1r𝑆) · 𝑌) = 𝑌)
9187, 90sylan9eqr 2788 . . . . 5 (((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) ∧ 𝑠 = (1r𝑆)) → (𝑠 · 𝑌) = 𝑌)
9286, 91mpdan 687 . . . 4 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠 · 𝑌) = 𝑌)
9339, 92eqtrd 2766 . . 3 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑋 = 𝑌)
9493rexlimdv3a 3137 . 2 (𝜑 → (∃𝑠𝑅 𝑋 = (𝑠 · 𝑌) → 𝑋 = 𝑌))
9538, 94mpd 15 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cdif 3894  {csn 4575  cmpt 5174  ran crn 5620  cfv 6487  crio 7308  (class class class)co 7352  Basecbs 17126  +gcplusg 17167  .rcmulr 17168  Scalarcsca 17170   ·𝑠 cvsca 17171  0gc0g 17349  1rcur 20105  Ringcrg 20157  invrcinvr 20311  DivRingcdr 20650  LModclmod 20799  LSpanclspn 20910  LVecclvec 21042  LFnlclfn 39162  LKerclk 39190  HLchlt 39455  LHypclh 40089  DVecHcdvh 41183  DIsoHcdih 41333  ocHcoch 41452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-riotaBAD 39058
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-undef 8209  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-n0 12388  df-z 12475  df-uz 12739  df-fz 13414  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-sca 17183  df-vsca 17184  df-0g 17351  df-proset 18206  df-poset 18225  df-plt 18240  df-lub 18256  df-glb 18257  df-join 18258  df-meet 18259  df-p0 18335  df-p1 18336  df-lat 18344  df-clat 18411  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-submnd 18698  df-grp 18855  df-minusg 18856  df-sbg 18857  df-subg 19042  df-cntz 19235  df-lsm 19554  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-dvr 20325  df-drng 20652  df-lmod 20801  df-lss 20871  df-lsp 20911  df-lvec 21043  df-lsatoms 39081  df-lshyp 39082  df-lfl 39163  df-lkr 39191  df-oposet 39281  df-ol 39283  df-oml 39284  df-covers 39371  df-ats 39372  df-atl 39403  df-cvlat 39427  df-hlat 39456  df-llines 39603  df-lplanes 39604  df-lvols 39605  df-lines 39606  df-psubsp 39608  df-pmap 39609  df-padd 39901  df-lhyp 40093  df-laut 40094  df-ldil 40209  df-ltrn 40210  df-trl 40264  df-tgrp 40848  df-tendo 40860  df-edring 40862  df-dveca 41108  df-disoa 41134  df-dvech 41184  df-dib 41244  df-dic 41278  df-dih 41334  df-doch 41453  df-djh 41500
This theorem is referenced by:  lcfl7N  41606  lcfrlem9  41655
  Copyright terms: Public domain W3C validator