Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl7lem Structured version   Visualization version   GIF version

Theorem lcfl7lem 39513
Description: Lemma for lcfl7N 39515. If two functionals 𝐺 and 𝐽 are equal, they are determined by the same vector. (Contributed by NM, 4-Jan-2015.)
Hypotheses
Ref Expression
lcfl7lem.h 𝐻 = (LHyp‘𝐾)
lcfl7lem.o = ((ocH‘𝐾)‘𝑊)
lcfl7lem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl7lem.v 𝑉 = (Base‘𝑈)
lcfl7lem.a + = (+g𝑈)
lcfl7lem.t · = ( ·𝑠𝑈)
lcfl7lem.s 𝑆 = (Scalar‘𝑈)
lcfl7lem.r 𝑅 = (Base‘𝑆)
lcfl7lem.z 0 = (0g𝑈)
lcfl7lem.f 𝐹 = (LFnl‘𝑈)
lcfl7lem.l 𝐿 = (LKer‘𝑈)
lcfl7lem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl7lem.g 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
lcfl7lem.j 𝐽 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌))))
lcfl7lem.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfl7lem.x2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfl7lem.gj (𝜑𝐺 = 𝐽)
Assertion
Ref Expression
lcfl7lem (𝜑𝑋 = 𝑌)
Distinct variable groups:   𝑣,𝑘,𝑤, +   ,𝑘,𝑣,𝑤   𝑤, 0   𝑅,𝑘,𝑣   𝑆,𝑘,𝑤   𝑣,𝑉   · ,𝑘,𝑣,𝑤   𝑘,𝑋,𝑣,𝑤   𝑘,𝑌,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑣)   𝑈(𝑤,𝑣,𝑘)   𝐹(𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑤,𝑣,𝑘)   𝐽(𝑤,𝑣,𝑘)   𝐾(𝑤,𝑣,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑤,𝑣,𝑘)   0 (𝑣,𝑘)

Proof of Theorem lcfl7lem
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lcfl7lem.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 lcfl7lem.o . . . . . 6 = ((ocH‘𝐾)‘𝑊)
3 lcfl7lem.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfl7lem.v . . . . . 6 𝑉 = (Base‘𝑈)
5 lcfl7lem.z . . . . . 6 0 = (0g𝑈)
6 lcfl7lem.a . . . . . 6 + = (+g𝑈)
7 lcfl7lem.t . . . . . 6 · = ( ·𝑠𝑈)
8 lcfl7lem.l . . . . . 6 𝐿 = (LKer‘𝑈)
9 lcfl7lem.s . . . . . 6 𝑆 = (Scalar‘𝑈)
10 lcfl7lem.r . . . . . 6 𝑅 = (Base‘𝑆)
11 lcfl7lem.g . . . . . 6 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋))))
12 lcfl7lem.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 lcfl7lem.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13dochsnkr2cl 39488 . . . . 5 (𝜑𝑋 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
1514eldifad 3899 . . . 4 (𝜑𝑋 ∈ ( ‘(𝐿𝐺)))
16 lcfl7lem.gj . . . . . . . 8 (𝜑𝐺 = 𝐽)
1716fveq2d 6778 . . . . . . 7 (𝜑 → (𝐿𝐺) = (𝐿𝐽))
18 lcfl7lem.j . . . . . . . 8 𝐽 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑌})𝑣 = (𝑤 + (𝑘 · 𝑌))))
19 lcfl7lem.x2 . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 12, 19dochsnkr2 39487 . . . . . . 7 (𝜑 → (𝐿𝐽) = ( ‘{𝑌}))
2117, 20eqtrd 2778 . . . . . 6 (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
2221fveq2d 6778 . . . . 5 (𝜑 → ( ‘(𝐿𝐺)) = ( ‘( ‘{𝑌})))
23 eqid 2738 . . . . . . 7 (LSpan‘𝑈) = (LSpan‘𝑈)
2419eldifad 3899 . . . . . . . 8 (𝜑𝑌𝑉)
2524snssd 4742 . . . . . . 7 (𝜑 → {𝑌} ⊆ 𝑉)
261, 3, 2, 4, 23, 12, 25dochocsp 39393 . . . . . 6 (𝜑 → ( ‘((LSpan‘𝑈)‘{𝑌})) = ( ‘{𝑌}))
2726fveq2d 6778 . . . . 5 (𝜑 → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ( ‘( ‘{𝑌})))
28 eqid 2738 . . . . . . . 8 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
291, 3, 4, 23, 28dihlsprn 39345 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
3012, 24, 29syl2anc 584 . . . . . 6 (𝜑 → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
311, 28, 2dochoc 39381 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ((LSpan‘𝑈)‘{𝑌}))
3212, 30, 31syl2anc 584 . . . . 5 (𝜑 → ( ‘( ‘((LSpan‘𝑈)‘{𝑌}))) = ((LSpan‘𝑈)‘{𝑌}))
3322, 27, 323eqtr2d 2784 . . . 4 (𝜑 → ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑌}))
3415, 33eleqtrd 2841 . . 3 (𝜑𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}))
351, 3, 12dvhlmod 39124 . . . 4 (𝜑𝑈 ∈ LMod)
369, 10, 4, 7, 23lspsnel 20265 . . . 4 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}) ↔ ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌)))
3735, 24, 36syl2anc 584 . . 3 (𝜑 → (𝑋 ∈ ((LSpan‘𝑈)‘{𝑌}) ↔ ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌)))
3834, 37mpbid 231 . 2 (𝜑 → ∃𝑠𝑅 𝑋 = (𝑠 · 𝑌))
39 simp3 1137 . . . 4 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑋 = (𝑠 · 𝑌))
40 fveq2 6774 . . . . . . . . . 10 (𝑋 = (𝑠 · 𝑌) → (𝐺𝑋) = (𝐺‘(𝑠 · 𝑌)))
41403ad2ant3 1134 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑋) = (𝐺‘(𝑠 · 𝑌)))
42 eqid 2738 . . . . . . . . . . . 12 (1r𝑆) = (1r𝑆)
431, 2, 3, 4, 6, 7, 5, 9, 10, 42, 12, 19, 18dochfl1 39490 . . . . . . . . . . 11 (𝜑 → (𝐽𝑌) = (1r𝑆))
4416fveq1d 6776 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (𝐽𝑌))
451, 2, 3, 4, 6, 7, 5, 9, 10, 42, 12, 13, 11dochfl1 39490 . . . . . . . . . . 11 (𝜑 → (𝐺𝑋) = (1r𝑆))
4643, 44, 453eqtr4rd 2789 . . . . . . . . . 10 (𝜑 → (𝐺𝑋) = (𝐺𝑌))
47463ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑋) = (𝐺𝑌))
48353ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑈 ∈ LMod)
49 lcfl7lem.f . . . . . . . . . . . 12 𝐹 = (LFnl‘𝑈)
501, 2, 3, 4, 5, 6, 7, 49, 9, 10, 11, 12, 13dochflcl 39489 . . . . . . . . . . 11 (𝜑𝐺𝐹)
51503ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝐺𝐹)
52 simp2 1136 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑠𝑅)
53243ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑌𝑉)
54 eqid 2738 . . . . . . . . . . 11 (.r𝑆) = (.r𝑆)
559, 10, 54, 4, 7, 49lflmul 37082 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑠𝑅𝑌𝑉)) → (𝐺‘(𝑠 · 𝑌)) = (𝑠(.r𝑆)(𝐺𝑌)))
5648, 51, 52, 53, 55syl112anc 1373 . . . . . . . . 9 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺‘(𝑠 · 𝑌)) = (𝑠(.r𝑆)(𝐺𝑌)))
5741, 47, 563eqtr3d 2786 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑌) = (𝑠(.r𝑆)(𝐺𝑌)))
5857oveq1d 7290 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))))
599lmodring 20131 . . . . . . . . . 10 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
6035, 59syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ Ring)
61603ad2ant1 1132 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑆 ∈ Ring)
629, 10, 4, 49lflcl 37078 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ 𝐺𝐹𝑌𝑉) → (𝐺𝑌) ∈ 𝑅)
6335, 50, 24, 62syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝐺𝑌) ∈ 𝑅)
64633ad2ant1 1132 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝐺𝑌) ∈ 𝑅)
651, 3, 12dvhlvec 39123 . . . . . . . . . . 11 (𝜑𝑈 ∈ LVec)
669lvecdrng 20367 . . . . . . . . . . 11 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
6765, 66syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ DivRing)
6844, 43eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (𝐺𝑌) = (1r𝑆))
69 eqid 2738 . . . . . . . . . . . . 13 (0g𝑆) = (0g𝑆)
7069, 42drngunz 20006 . . . . . . . . . . . 12 (𝑆 ∈ DivRing → (1r𝑆) ≠ (0g𝑆))
7167, 70syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝑆) ≠ (0g𝑆))
7268, 71eqnetrd 3011 . . . . . . . . . 10 (𝜑 → (𝐺𝑌) ≠ (0g𝑆))
73 eqid 2738 . . . . . . . . . . 11 (invr𝑆) = (invr𝑆)
7410, 69, 73drnginvrcl 20008 . . . . . . . . . 10 ((𝑆 ∈ DivRing ∧ (𝐺𝑌) ∈ 𝑅 ∧ (𝐺𝑌) ≠ (0g𝑆)) → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
7567, 63, 72, 74syl3anc 1370 . . . . . . . . 9 (𝜑 → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
76753ad2ant1 1132 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)
7710, 54ringass 19803 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (𝑠𝑅 ∧ (𝐺𝑌) ∈ 𝑅 ∧ ((invr𝑆)‘(𝐺𝑌)) ∈ 𝑅)) → ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))))
7861, 52, 64, 76, 77syl13anc 1371 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝑠(.r𝑆)(𝐺𝑌))(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))))
7910, 69, 54, 42, 73drnginvrr 20011 . . . . . . . . . 10 ((𝑆 ∈ DivRing ∧ (𝐺𝑌) ∈ 𝑅 ∧ (𝐺𝑌) ≠ (0g𝑆)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
8067, 63, 72, 79syl3anc 1370 . . . . . . . . 9 (𝜑 → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
81803ad2ant1 1132 . . . . . . . 8 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))) = (1r𝑆))
8281oveq2d 7291 . . . . . . 7 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌)))) = (𝑠(.r𝑆)(1r𝑆)))
8358, 78, 823eqtrrd 2783 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)(1r𝑆)) = ((𝐺𝑌)(.r𝑆)((invr𝑆)‘(𝐺𝑌))))
8410, 54, 42ringridm 19811 . . . . . . 7 ((𝑆 ∈ Ring ∧ 𝑠𝑅) → (𝑠(.r𝑆)(1r𝑆)) = 𝑠)
8561, 52, 84syl2anc 584 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠(.r𝑆)(1r𝑆)) = 𝑠)
8683, 85, 813eqtr3d 2786 . . . . 5 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑠 = (1r𝑆))
87 oveq1 7282 . . . . . 6 (𝑠 = (1r𝑆) → (𝑠 · 𝑌) = ((1r𝑆) · 𝑌))
884, 9, 7, 42lmodvs1 20151 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → ((1r𝑆) · 𝑌) = 𝑌)
8935, 24, 88syl2anc 584 . . . . . . 7 (𝜑 → ((1r𝑆) · 𝑌) = 𝑌)
90893ad2ant1 1132 . . . . . 6 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → ((1r𝑆) · 𝑌) = 𝑌)
9187, 90sylan9eqr 2800 . . . . 5 (((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) ∧ 𝑠 = (1r𝑆)) → (𝑠 · 𝑌) = 𝑌)
9286, 91mpdan 684 . . . 4 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → (𝑠 · 𝑌) = 𝑌)
9339, 92eqtrd 2778 . . 3 ((𝜑𝑠𝑅𝑋 = (𝑠 · 𝑌)) → 𝑋 = 𝑌)
9493rexlimdv3a 3215 . 2 (𝜑 → (∃𝑠𝑅 𝑋 = (𝑠 · 𝑌) → 𝑋 = 𝑌))
9538, 94mpd 15 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  {csn 4561  cmpt 5157  ran crn 5590  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  1rcur 19737  Ringcrg 19783  invrcinvr 19913  DivRingcdr 19991  LModclmod 20123  LSpanclspn 20233  LVecclvec 20364  LFnlclfn 37071  LKerclk 37099  HLchlt 37364  LHypclh 37998  DVecHcdvh 39092  DIsoHcdih 39242  ocHcoch 39361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990  df-lshyp 36991  df-lfl 37072  df-lkr 37100  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tgrp 38757  df-tendo 38769  df-edring 38771  df-dveca 39017  df-disoa 39043  df-dvech 39093  df-dib 39153  df-dic 39187  df-dih 39243  df-doch 39362  df-djh 39409
This theorem is referenced by:  lcfl7N  39515  lcfrlem9  39564
  Copyright terms: Public domain W3C validator