Step | Hyp | Ref
| Expression |
1 | | lclkrlem2o.h |
. . . 4
β’ π» = (LHypβπΎ) |
2 | | lclkrlem2o.o |
. . . 4
β’ β₯ =
((ocHβπΎ)βπ) |
3 | | lclkrlem2o.u |
. . . 4
β’ π = ((DVecHβπΎ)βπ) |
4 | | lclkrlem2m.v |
. . . 4
β’ π = (Baseβπ) |
5 | | eqid 2732 |
. . . 4
β’
(0gβπ) = (0gβπ) |
6 | | lclkrlem2o.k |
. . . 4
β’ (π β (πΎ β HL β§ π β π»)) |
7 | | lclkrlem2m.t |
. . . . . . 7
β’ Β· = (
Β·π βπ) |
8 | | lclkrlem2m.s |
. . . . . . 7
β’ π = (Scalarβπ) |
9 | | lclkrlem2m.q |
. . . . . . 7
β’ Γ =
(.rβπ) |
10 | | lclkrlem2m.z |
. . . . . . 7
β’ 0 =
(0gβπ) |
11 | | lclkrlem2m.i |
. . . . . . 7
β’ πΌ = (invrβπ) |
12 | | lclkrlem2m.m |
. . . . . . 7
β’ β =
(-gβπ) |
13 | | lclkrlem2m.f |
. . . . . . 7
β’ πΉ = (LFnlβπ) |
14 | | lclkrlem2m.d |
. . . . . . 7
β’ π· = (LDualβπ) |
15 | | lclkrlem2m.p |
. . . . . . 7
β’ + =
(+gβπ·) |
16 | | lclkrlem2m.x |
. . . . . . 7
β’ (π β π β π) |
17 | | lclkrlem2m.y |
. . . . . . 7
β’ (π β π β π) |
18 | | lclkrlem2m.e |
. . . . . . 7
β’ (π β πΈ β πΉ) |
19 | | lclkrlem2m.g |
. . . . . . 7
β’ (π β πΊ β πΉ) |
20 | 1, 3, 6 | dvhlvec 39968 |
. . . . . . 7
β’ (π β π β LVec) |
21 | | lclkrlem2o.b |
. . . . . . 7
β’ π΅ = (π β ((((πΈ + πΊ)βπ) Γ (πΌβ((πΈ + πΊ)βπ))) Β· π)) |
22 | | lclkrlem2o.n |
. . . . . . 7
β’ (π β ((πΈ + πΊ)βπ) β 0 ) |
23 | 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 | lclkrlem2m 40378 |
. . . . . 6
β’ (π β (π΅ β π β§ ((πΈ + πΊ)βπ΅) = 0 )) |
24 | 23 | simpld 495 |
. . . . 5
β’ (π β π΅ β π) |
25 | | lclkrlem2o.bn |
. . . . 5
β’ (π β π΅ β (0gβπ)) |
26 | | eldifsn 4789 |
. . . . 5
β’ (π΅ β (π β {(0gβπ)}) β (π΅ β π β§ π΅ β (0gβπ))) |
27 | 24, 25, 26 | sylanbrc 583 |
. . . 4
β’ (π β π΅ β (π β {(0gβπ)})) |
28 | 1, 2, 3, 4, 5, 6, 27 | dochnel 40252 |
. . 3
β’ (π β Β¬ π΅ β ( β₯ β{π΅})) |
29 | 1, 3, 6 | dvhlmod 39969 |
. . . . . 6
β’ (π β π β LMod) |
30 | 29 | adantr 481 |
. . . . 5
β’ ((π β§ (π β ( β₯ β{π΅}) β§ π β ( β₯ β{π΅}))) β π β LMod) |
31 | 24 | snssd 4811 |
. . . . . . 7
β’ (π β {π΅} β π) |
32 | | eqid 2732 |
. . . . . . . 8
β’
(LSubSpβπ) =
(LSubSpβπ) |
33 | 1, 3, 4, 32, 2 | dochlss 40213 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ {π΅} β π) β ( β₯ β{π΅}) β (LSubSpβπ)) |
34 | 6, 31, 33 | syl2anc 584 |
. . . . . 6
β’ (π β ( β₯ β{π΅}) β (LSubSpβπ)) |
35 | 34 | adantr 481 |
. . . . 5
β’ ((π β§ (π β ( β₯ β{π΅}) β§ π β ( β₯ β{π΅}))) β ( β₯ β{π΅}) β (LSubSpβπ)) |
36 | | simprl 769 |
. . . . 5
β’ ((π β§ (π β ( β₯ β{π΅}) β§ π β ( β₯ β{π΅}))) β π β ( β₯ β{π΅})) |
37 | 8 | lmodring 20471 |
. . . . . . . . 9
β’ (π β LMod β π β Ring) |
38 | 29, 37 | syl 17 |
. . . . . . . 8
β’ (π β π β Ring) |
39 | 13, 14, 15, 29, 18, 19 | ldualvaddcl 37988 |
. . . . . . . . 9
β’ (π β (πΈ + πΊ) β πΉ) |
40 | | eqid 2732 |
. . . . . . . . . 10
β’
(Baseβπ) =
(Baseβπ) |
41 | 8, 40, 4, 13 | lflcl 37922 |
. . . . . . . . 9
β’ ((π β LMod β§ (πΈ + πΊ) β πΉ β§ π β π) β ((πΈ + πΊ)βπ) β (Baseβπ)) |
42 | 29, 39, 16, 41 | syl3anc 1371 |
. . . . . . . 8
β’ (π β ((πΈ + πΊ)βπ) β (Baseβπ)) |
43 | 8 | lvecdrng 20708 |
. . . . . . . . . 10
β’ (π β LVec β π β
DivRing) |
44 | 20, 43 | syl 17 |
. . . . . . . . 9
β’ (π β π β DivRing) |
45 | 8, 40, 4, 13 | lflcl 37922 |
. . . . . . . . . 10
β’ ((π β LMod β§ (πΈ + πΊ) β πΉ β§ π β π) β ((πΈ + πΊ)βπ) β (Baseβπ)) |
46 | 29, 39, 17, 45 | syl3anc 1371 |
. . . . . . . . 9
β’ (π β ((πΈ + πΊ)βπ) β (Baseβπ)) |
47 | 40, 10, 11 | drnginvrcl 20329 |
. . . . . . . . 9
β’ ((π β DivRing β§ ((πΈ + πΊ)βπ) β (Baseβπ) β§ ((πΈ + πΊ)βπ) β 0 ) β (πΌβ((πΈ + πΊ)βπ)) β (Baseβπ)) |
48 | 44, 46, 22, 47 | syl3anc 1371 |
. . . . . . . 8
β’ (π β (πΌβ((πΈ + πΊ)βπ)) β (Baseβπ)) |
49 | 40, 9 | ringcl 20066 |
. . . . . . . 8
β’ ((π β Ring β§ ((πΈ + πΊ)βπ) β (Baseβπ) β§ (πΌβ((πΈ + πΊ)βπ)) β (Baseβπ)) β (((πΈ + πΊ)βπ) Γ (πΌβ((πΈ + πΊ)βπ))) β (Baseβπ)) |
50 | 38, 42, 48, 49 | syl3anc 1371 |
. . . . . . 7
β’ (π β (((πΈ + πΊ)βπ) Γ (πΌβ((πΈ + πΊ)βπ))) β (Baseβπ)) |
51 | 50 | adantr 481 |
. . . . . 6
β’ ((π β§ (π β ( β₯ β{π΅}) β§ π β ( β₯ β{π΅}))) β (((πΈ + πΊ)βπ) Γ (πΌβ((πΈ + πΊ)βπ))) β (Baseβπ)) |
52 | | simprr 771 |
. . . . . 6
β’ ((π β§ (π β ( β₯ β{π΅}) β§ π β ( β₯ β{π΅}))) β π β ( β₯ β{π΅})) |
53 | 8, 7, 40, 32 | lssvscl 20558 |
. . . . . 6
β’ (((π β LMod β§ ( β₯
β{π΅}) β
(LSubSpβπ)) β§
((((πΈ + πΊ)βπ) Γ (πΌβ((πΈ + πΊ)βπ))) β (Baseβπ) β§ π β ( β₯ β{π΅}))) β ((((πΈ + πΊ)βπ) Γ (πΌβ((πΈ + πΊ)βπ))) Β· π) β ( β₯ β{π΅})) |
54 | 30, 35, 51, 52, 53 | syl22anc 837 |
. . . . 5
β’ ((π β§ (π β ( β₯ β{π΅}) β§ π β ( β₯ β{π΅}))) β ((((πΈ + πΊ)βπ) Γ (πΌβ((πΈ + πΊ)βπ))) Β· π) β ( β₯ β{π΅})) |
55 | 12, 32 | lssvsubcl 20546 |
. . . . 5
β’ (((π β LMod β§ ( β₯
β{π΅}) β
(LSubSpβπ)) β§
(π β ( β₯
β{π΅}) β§ ((((πΈ + πΊ)βπ) Γ (πΌβ((πΈ + πΊ)βπ))) Β· π) β ( β₯ β{π΅}))) β (π β ((((πΈ + πΊ)βπ) Γ (πΌβ((πΈ + πΊ)βπ))) Β· π)) β ( β₯ β{π΅})) |
56 | 30, 35, 36, 54, 55 | syl22anc 837 |
. . . 4
β’ ((π β§ (π β ( β₯ β{π΅}) β§ π β ( β₯ β{π΅}))) β (π β ((((πΈ + πΊ)βπ) Γ (πΌβ((πΈ + πΊ)βπ))) Β· π)) β ( β₯ β{π΅})) |
57 | 21, 56 | eqeltrid 2837 |
. . 3
β’ ((π β§ (π β ( β₯ β{π΅}) β§ π β ( β₯ β{π΅}))) β π΅ β ( β₯ β{π΅})) |
58 | 28, 57 | mtand 814 |
. 2
β’ (π β Β¬ (π β ( β₯ β{π΅}) β§ π β ( β₯ β{π΅}))) |
59 | | ianor 980 |
. 2
β’ (Β¬
(π β ( β₯
β{π΅}) β§ π β ( β₯ β{π΅})) β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
60 | 58, 59 | sylib 217 |
1
β’ (π β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |