Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2o Structured version   Visualization version   GIF version

Theorem lclkrlem2o 38651
Description: Lemma for lclkr 38663. When 𝐵 is nonzero, the vectors 𝑋 and 𝑌 can't both belong to the hyperplane generated by 𝐵. (Contributed by NM, 17-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2n.n 𝑁 = (LSpan‘𝑈)
lclkrlem2n.l 𝐿 = (LKer‘𝑈)
lclkrlem2o.h 𝐻 = (LHyp‘𝐾)
lclkrlem2o.o = ((ocH‘𝐾)‘𝑊)
lclkrlem2o.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lclkrlem2o.a = (LSSum‘𝑈)
lclkrlem2o.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lclkrlem2o.b 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
lclkrlem2o.n (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
lclkrlem2o.bn (𝜑𝐵 ≠ (0g𝑈))
Assertion
Ref Expression
lclkrlem2o (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))

Proof of Theorem lclkrlem2o
StepHypRef Expression
1 lclkrlem2o.h . . . 4 𝐻 = (LHyp‘𝐾)
2 lclkrlem2o.o . . . 4 = ((ocH‘𝐾)‘𝑊)
3 lclkrlem2o.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lclkrlem2m.v . . . 4 𝑉 = (Base‘𝑈)
5 eqid 2821 . . . 4 (0g𝑈) = (0g𝑈)
6 lclkrlem2o.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 lclkrlem2m.t . . . . . . 7 · = ( ·𝑠𝑈)
8 lclkrlem2m.s . . . . . . 7 𝑆 = (Scalar‘𝑈)
9 lclkrlem2m.q . . . . . . 7 × = (.r𝑆)
10 lclkrlem2m.z . . . . . . 7 0 = (0g𝑆)
11 lclkrlem2m.i . . . . . . 7 𝐼 = (invr𝑆)
12 lclkrlem2m.m . . . . . . 7 = (-g𝑈)
13 lclkrlem2m.f . . . . . . 7 𝐹 = (LFnl‘𝑈)
14 lclkrlem2m.d . . . . . . 7 𝐷 = (LDual‘𝑈)
15 lclkrlem2m.p . . . . . . 7 + = (+g𝐷)
16 lclkrlem2m.x . . . . . . 7 (𝜑𝑋𝑉)
17 lclkrlem2m.y . . . . . . 7 (𝜑𝑌𝑉)
18 lclkrlem2m.e . . . . . . 7 (𝜑𝐸𝐹)
19 lclkrlem2m.g . . . . . . 7 (𝜑𝐺𝐹)
201, 3, 6dvhlvec 38239 . . . . . . 7 (𝜑𝑈 ∈ LVec)
21 lclkrlem2o.b . . . . . . 7 𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))
22 lclkrlem2o.n . . . . . . 7 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )
234, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22lclkrlem2m 38649 . . . . . 6 (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))
2423simpld 497 . . . . 5 (𝜑𝐵𝑉)
25 lclkrlem2o.bn . . . . 5 (𝜑𝐵 ≠ (0g𝑈))
26 eldifsn 4712 . . . . 5 (𝐵 ∈ (𝑉 ∖ {(0g𝑈)}) ↔ (𝐵𝑉𝐵 ≠ (0g𝑈)))
2724, 25, 26sylanbrc 585 . . . 4 (𝜑𝐵 ∈ (𝑉 ∖ {(0g𝑈)}))
281, 2, 3, 4, 5, 6, 27dochnel 38523 . . 3 (𝜑 → ¬ 𝐵 ∈ ( ‘{𝐵}))
291, 3, 6dvhlmod 38240 . . . . . 6 (𝜑𝑈 ∈ LMod)
3029adantr 483 . . . . 5 ((𝜑 ∧ (𝑋 ∈ ( ‘{𝐵}) ∧ 𝑌 ∈ ( ‘{𝐵}))) → 𝑈 ∈ LMod)
3124snssd 4735 . . . . . . 7 (𝜑 → {𝐵} ⊆ 𝑉)
32 eqid 2821 . . . . . . . 8 (LSubSp‘𝑈) = (LSubSp‘𝑈)
331, 3, 4, 32, 2dochlss 38484 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐵} ⊆ 𝑉) → ( ‘{𝐵}) ∈ (LSubSp‘𝑈))
346, 31, 33syl2anc 586 . . . . . 6 (𝜑 → ( ‘{𝐵}) ∈ (LSubSp‘𝑈))
3534adantr 483 . . . . 5 ((𝜑 ∧ (𝑋 ∈ ( ‘{𝐵}) ∧ 𝑌 ∈ ( ‘{𝐵}))) → ( ‘{𝐵}) ∈ (LSubSp‘𝑈))
36 simprl 769 . . . . 5 ((𝜑 ∧ (𝑋 ∈ ( ‘{𝐵}) ∧ 𝑌 ∈ ( ‘{𝐵}))) → 𝑋 ∈ ( ‘{𝐵}))
378lmodring 19636 . . . . . . . . 9 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
3829, 37syl 17 . . . . . . . 8 (𝜑𝑆 ∈ Ring)
3913, 14, 15, 29, 18, 19ldualvaddcl 36260 . . . . . . . . 9 (𝜑 → (𝐸 + 𝐺) ∈ 𝐹)
40 eqid 2821 . . . . . . . . . 10 (Base‘𝑆) = (Base‘𝑆)
418, 40, 4, 13lflcl 36194 . . . . . . . . 9 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹𝑋𝑉) → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆))
4229, 39, 16, 41syl3anc 1367 . . . . . . . 8 (𝜑 → ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆))
438lvecdrng 19871 . . . . . . . . . 10 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
4420, 43syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ DivRing)
458, 40, 4, 13lflcl 36194 . . . . . . . . . 10 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹𝑌𝑉) → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))
4629, 39, 17, 45syl3anc 1367 . . . . . . . . 9 (𝜑 → ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆))
4740, 10, 11drnginvrcl 19513 . . . . . . . . 9 ((𝑆 ∈ DivRing ∧ ((𝐸 + 𝐺)‘𝑌) ∈ (Base‘𝑆) ∧ ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆))
4844, 46, 22, 47syl3anc 1367 . . . . . . . 8 (𝜑 → (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆))
4940, 9ringcl 19305 . . . . . . . 8 ((𝑆 ∈ Ring ∧ ((𝐸 + 𝐺)‘𝑋) ∈ (Base‘𝑆) ∧ (𝐼‘((𝐸 + 𝐺)‘𝑌)) ∈ (Base‘𝑆)) → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
5038, 42, 48, 49syl3anc 1367 . . . . . . 7 (𝜑 → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
5150adantr 483 . . . . . 6 ((𝜑 ∧ (𝑋 ∈ ( ‘{𝐵}) ∧ 𝑌 ∈ ( ‘{𝐵}))) → (((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆))
52 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑋 ∈ ( ‘{𝐵}) ∧ 𝑌 ∈ ( ‘{𝐵}))) → 𝑌 ∈ ( ‘{𝐵}))
538, 7, 40, 32lssvscl 19721 . . . . . 6 (((𝑈 ∈ LMod ∧ ( ‘{𝐵}) ∈ (LSubSp‘𝑈)) ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) ∈ (Base‘𝑆) ∧ 𝑌 ∈ ( ‘{𝐵}))) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ ( ‘{𝐵}))
5430, 35, 51, 52, 53syl22anc 836 . . . . 5 ((𝜑 ∧ (𝑋 ∈ ( ‘{𝐵}) ∧ 𝑌 ∈ ( ‘{𝐵}))) → ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ ( ‘{𝐵}))
5512, 32lssvsubcl 19709 . . . . 5 (((𝑈 ∈ LMod ∧ ( ‘{𝐵}) ∈ (LSubSp‘𝑈)) ∧ (𝑋 ∈ ( ‘{𝐵}) ∧ ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌) ∈ ( ‘{𝐵}))) → (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ ( ‘{𝐵}))
5630, 35, 36, 54, 55syl22anc 836 . . . 4 ((𝜑 ∧ (𝑋 ∈ ( ‘{𝐵}) ∧ 𝑌 ∈ ( ‘{𝐵}))) → (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) ∈ ( ‘{𝐵}))
5721, 56eqeltrid 2917 . . 3 ((𝜑 ∧ (𝑋 ∈ ( ‘{𝐵}) ∧ 𝑌 ∈ ( ‘{𝐵}))) → 𝐵 ∈ ( ‘{𝐵}))
5828, 57mtand 814 . 2 (𝜑 → ¬ (𝑋 ∈ ( ‘{𝐵}) ∧ 𝑌 ∈ ( ‘{𝐵})))
59 ianor 978 . 2 (¬ (𝑋 ∈ ( ‘{𝐵}) ∧ 𝑌 ∈ ( ‘{𝐵})) ↔ (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))
6058, 59sylib 220 1 (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  cdif 3932  wss 3935  {csn 4560  cfv 6349  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  .rcmulr 16560  Scalarcsca 16562   ·𝑠 cvsca 16563  0gc0g 16707  -gcsg 18099  LSSumclsm 18753  Ringcrg 19291  invrcinvr 19415  DivRingcdr 19496  LModclmod 19628  LSubSpclss 19697  LSpanclspn 19737  LVecclvec 19868  LFnlclfn 36187  LKerclk 36215  LDualcld 36253  HLchlt 36480  LHypclh 37114  DVecHcdvh 38208  ocHcoch 38477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-riotaBAD 36083
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-undef 7933  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-0g 16709  df-proset 17532  df-poset 17550  df-plt 17562  df-lub 17578  df-glb 17579  df-join 17580  df-meet 17581  df-p0 17643  df-p1 17644  df-lat 17650  df-clat 17712  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-subg 18270  df-cntz 18441  df-lsm 18755  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-lmod 19630  df-lss 19698  df-lsp 19738  df-lvec 19869  df-lsatoms 36106  df-lfl 36188  df-ldual 36254  df-oposet 36306  df-ol 36308  df-oml 36309  df-covers 36396  df-ats 36397  df-atl 36428  df-cvlat 36452  df-hlat 36481  df-llines 36628  df-lplanes 36629  df-lvols 36630  df-lines 36631  df-psubsp 36633  df-pmap 36634  df-padd 36926  df-lhyp 37118  df-laut 37119  df-ldil 37234  df-ltrn 37235  df-trl 37289  df-tendo 37885  df-edring 37887  df-disoa 38159  df-dvech 38209  df-dib 38269  df-dic 38303  df-dih 38359  df-doch 38478
This theorem is referenced by:  lclkrlem2q  38653
  Copyright terms: Public domain W3C validator